zoukankan      html  css  js  c++  java
  • clickhouse常用命令

    clickhouse 常用命令
    #查看所有分区
    SELECT
      database,
      table,
      partition,
      name,
      active
    FROM system.parts
    WHERE table = 'table_name'

    Clickhouse删除分区命令: 分区name
    alter table sip.ngfw_access_tuple_all_20y DROP PARTITION '2020-05-01';

    Clickhouse统计当日数据:
    SELECT count() FROM log.netflow WHERE toDate(record_time) = '{}';


    #查看库表容量,压缩率等
    select
      sum(rows) as row,--总行数
      formatReadableSize(sum(data_uncompressed_bytes)) as ysq,--原始大小
      formatReadableSize(sum(data_compressed_bytes)) as ysh,--压缩大小
      round(sum(data_compressed_bytes) / sum(data_uncompressed_bytes) * 100, 0) ys_rate--压缩率
    from system.parts

    #查看各库表指标(字节显示):大小,行数,日期,落盘数据大小,压缩前,压缩后大小
    select database,
      table,
      sum(bytes) as size,
      sum(rows) as rows,
      min(min_date) as min_date,
      max(max_date) as max_date,
      sum(bytes_on_disk) as bytes_on_disk,
      sum(data_uncompressed_bytes) as data_uncompressed_bytes,
      sum(data_compressed_bytes) as data_compressed_bytes,
      (data_compressed_bytes / data_uncompressed_bytes) * 100 as compress_rate,
      max_date - min_date as days,
      size / (max_date - min_date) as avgDaySize
    from system.parts
    where active
      and database = 'db_name'
      and table = 'table_name'
      group by database, table

    #查看各库表指标(GB显示):大小,行数,日期,落盘数据大小,压缩前,压缩后大小
    select
      database,
      table,
      formatReadableSize(size) as size,
      formatReadableSize(bytes_on_disk) as bytes_on_disk,
      formatReadableSize(data_uncompressed_bytes) as data_uncompressed_bytes,
      formatReadableSize(data_compressed_bytes) as data_compressed_bytes,
      compress_rate,
      rows,
      days,
      formatReadableSize(avgDaySize) as avgDaySize
    from
     (
       select
          database,
          table,
          sum(bytes) as size,
          sum(rows) as rows,
          min(min_date) as min_date,
          max(max_date) as max_date,
          sum(bytes_on_disk) as bytes_on_disk,
          sum(data_uncompressed_bytes) as data_uncompressed_bytes,
          sum(data_compressed_bytes) as data_compressed_bytes,
          (data_compressed_bytes / data_uncompressed_bytes) * 100 as compress_rate,
          max_date - min_date as days,
          size / (max_date - min_date) as avgDaySize
        from system.parts
        where active
          and database = 'db_name'
          and table = 'tb_name'
        group by
          database,
          table
    )


    #查看表中数据大小:

    SELECT column,
      any(type),
      sum(column_data_compressed_bytes) AS compressed,
      sum(column_data_uncompressed_bytes) AS uncompressed,
      sum(rows)
    FROM system.parts_columns
    WHERE database = 'db_name'
      and table = 'table_name'
      AND active
    GROUP BY column
    ORDER BY column ASC


    #python 模块地址
    /usr/lib64/python2.7/site-packages/clickhouse

    #删除表
    DROP table db.tb

    #全流量元数据建表
    "CREATE TABLE IF NOT EXISTS slb.netflow_25E_io_test (src_ip IPv6, src_port UInt16, dst_ip IPv6, dst_port UInt16, app_crc UInt32, request_flow Int64, response_flow Int64, record_time DateTime) ENGINE = MergeTree() PARTITION BY toDate(record_time) ORDER BY record_time SETTINGS index_granularity = 8192"

    #批处理 SQL 语句执行,文件插入
    #cat 读取文件流,作为 INSERT 数据输入
    cat /data/test_fetch.tsv | clickhouse-client --query "INSERT INTO test_fetch FORMAT TSV"

    #重定向输出
    clickhouse-client --query="SELECT * FROM test_fetch" > /data/test_fetch.tsv"

    #多条SQL语句,分号间隔,依次输出
    clickhouse-client -h 127.0.0.1 --multiquery --query="SELECT 1;SELECT 2;SELECT 3;"

    --host -h 地址
    --port 端口
    --user -u
    --password
    --database -d
    --query
    --multiquery -n
    --time -t 打印每条sql执行时间

    #建库
    CREATE DATABASE IF NOT EXISTS db_name [ENGINE = engine]

    #数据库支持的五种引擎
    Ordinary 默认
    Dictionary 字典引擎
    Memory 内存引擎,存放临时数据,此库下的数据表只停留在内存中,不涉及磁盘操作,重启数据消失
    Lazy 日志引擎,该数据库下只能使用Log 系列的表引擎
    MySQL mysql引擎,该数据库会自动拉取远端MySQL中的数据,并为他们创建MySQL的表引擎的数据表

    CREATE DATABASE DB_TEST;
    默认数据库实质是磁盘的一个文件目录,建库语句执行后 ck 会在安装路径下创建 DB_TEST 数据库的文件目录
    #pwd
    /chbase/data
    #ls
    DB_TEST default system

    #删库
    DROP DATABASE [IF EXISTS] db_name;

    #建表
    CREATE TABLE [IF NOT EXISTS] [db_name.]table_name (
    name1 [type] [DEFAULT | MATERIALIZED | ALIAS expr],
    name2....
    .....
    ) ENGINE = engine;

    #复制其他表结构
    CREATE TABLE [IF NOT EXISTS] [db_name.]new_tb AS [db_name2.]old_tb [ENGINE = engine]
    #eg:
    create table if not exists new_tb as default.hits_v1 engine = TinyLog;

    #SELECT 语句复制表,并 copy 数据
    CREATE TABLE IF NOT EXISTS [db_name.]new_tb ENGINE = engine AS SELECT .....
    #eg:
    create table if not exists new_tb engine=Memory as select * from default.hits_v1

    #删除表
    DROP TABLE [IF EXISTS] [db_name.]tb_name;

    #按照分区表查询,提高查询速度
    SELECT * FROM partition_name WHERE record_time = '2020-06-17';

    #删除字段
    ALTER TABLE tb_name DROP COLUMN [IF EXISTS] name
    alter table test_v1 drop column URL;

    #移动表/重命名表 - 类 Linux mv 命令
    RENAME TABLE [db_name11.]tb_name11 TO [db_name12.]tb_name12, [db_name21.]tb_name21 TO [db_name22.]tb_name22,.....
    #eg:
    rename table default.test_v1 to db_test.test_v2;

    #清空数据表
    TRUNCATE TABLE [IF EXISTS] [db_name.]tb_name
    #eg:
    truncate table db_test.test_v2

    #查询分区信息
    SELECT partition_id,name,table,database FROM system.parts where table = 'partition_name';

    #删除分区
    ALTER TABLE tb_name DROP PARTITION partition_expr

    #卸载分区 DETACH 语句
    ALTER TABLE tb_name DETACH PARTITION partition_expr;
    #eg: 如下语句将卸载整个2020年6月的数据
    alter table tb_nama detach partition '202006';
    #被卸载的数据移动到
    #pwd
    /chbase/data/data/default/partition_v2/detached 目录下
    分区一旦移动到 detached 子目录,代表它脱离了 Clickhouse 的管理,clickhouse 并不会主动清理这些文件,只能自己删除,除非重新装载它们

    #重新装载分区
    ALTER TABLE partition_v2 ATTACH PARTITION '202006';

    #分布式DDL执行 只需要加上 ON CLUSTER cluster_name 即可:
    一条普通DDL语句转换分布式执行,如下语句将会对 ch_cluster 集群内的所有节点广播这条 DDL 语句:
    CREATE TABLE partition_v3 ON CLUSTER ch_cluster(
      ID String,
      URL String,
      EventTime Data
    ) ENGINE = MergeTree()
    PARTITION BY toYYYYMM(EventTime)
    ORDER BY ID

    #数据写入 INSERT 语句,三种方式
    1.常规,多行数据后面逗号依次展开
    INSERT INTO [db.]table [(c1,c2,c3...)] values (v11,v12,v13...),(v21,v22,v23...),.....
    同时支持表达式及函数
    insert into partition_v2 values ('a0014',toString(1+2),now());

    2.使用指定格式的语法
    INSERT INTO [db.]table [(c1,c2,c3...)] FORMAT format_name data_set;
    #eg CSV 格式为例:
    INSERT INTO partition_v2 FORMAT CSV
    'A0017','url1','2020-06-01'
    'A0018','url2','2020-06-03'

    3.使用 SELECT 子句
    INSERT INTO [db.]table [(c1,c2,c3...)] SELECT * FROM partition_v1

  • 相关阅读:
    golang plugin插件的使用
    UE4 是如何渲染每一帧画面的
    虚幻4 Gbuffer
    学习一下虚幻4
    关于 Kapacitor 和 TickScript 的笔记
    SpringOne2020
    TICK Telegraf InfluxDB Chronograf Kapacitor 参考资料
    【转】高考英语常考短语100条
    「面试」拿到B站的意向书
    使用ABAP操作office Word文档
  • 原文地址:https://www.cnblogs.com/tonggc1668/p/14986930.html
Copyright © 2011-2022 走看看