zoukankan      html  css  js  c++  java
  • 前景检测算法_1(codebook和平均背景法)

          前景分割中一个非常重要的研究方向就是背景减图法,因为背景减图的方法简单,原理容易被想到,且在智能视频监控领域中,摄像机很多情况下是固定的,且背景也是基本不变或者是缓慢变换的,在这种场合背景减图法的应用驱使了其不少科研人员去研究它。

          但是背景减图获得前景图像的方法缺点也很多:比如说光照因素,遮挡因素,动态周期背景,且背景非周期背景,且一般情况下我们考虑的是每个像素点之间独立,这对实际应用留下了很大的隐患。

          这一小讲主要是讲简单背景减图法和codebook法。

    一、简单背景减图法的工作原理。

          在视频对背景进行建模的过程中,每2帧图像之间对应像素点灰度值算出一个误差值,在背景建模时间内算出该像素点的平均值,误差平均值,然后在平均差值的基础上+-误差平均值的常数(这个系数需要手动调整)倍作为背景图像的阈值范围,所以当进行前景检测时,当相应点位置来了一个像素时,如果来的这个像素的每个通道的灰度值都在这个阈值范围内,则认为是背景用0表示,否则认为是前景用255表示。

          下面的一个工程是learning opencv一书中作者提供的源代码,关于简单背景减图的代码和注释如下:

         avg_background.h文件:

     1 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    2 // Accumulate average and ~std (really absolute difference) image and use this to detect background and foreground
    3 //
    4 // Typical way of using this is to:
    5 // AllocateImages();
    6 ////loop for N images to accumulate background differences
    7 // accumulateBackground();
    8 ////When done, turn this into our avg and std model with high and low bounds
    9 // createModelsfromStats();
    10 ////Then use the function to return background in a mask (255 == foreground, 0 == background)
    11 // backgroundDiff(IplImage *I,IplImage *Imask, int num);
    12 ////Then tune the high and low difference from average image background acceptance thresholds
    13 // float scalehigh,scalelow; //Set these, defaults are 7 and 6. Note: scalelow is how many average differences below average
    14 // scaleHigh(scalehigh);
    15 // scaleLow(scalelow);
    16 ////That is, change the scale high and low bounds for what should be background to make it work.
    17 ////Then continue detecting foreground in the mask image
    18 // backgroundDiff(IplImage *I,IplImage *Imask, int num);
    19 //
    20 //NOTES: num is camera number which varies from 0 ... NUM_CAMERAS - 1. Typically you only have one camera, but this routine allows
    21 // you to index many.
    22 //
    23 #ifndef AVGSEG_
    24 #define AVGSEG_
    25
    26
    27 #include "cv.h" // define all of the opencv classes etc.
    28 #include "highgui.h"
    29 #include "cxcore.h"
    30
    31 //IMPORTANT DEFINES:
    32 #define NUM_CAMERAS 1 //This function can handle an array of cameras
    33 #define HIGH_SCALE_NUM 7.0 //How many average differences from average image on the high side == background
    34 #define LOW_SCALE_NUM 6.0 //How many average differences from average image on the low side == background
    35
    36 void AllocateImages(IplImage *I);
    37 void DeallocateImages();
    38 void accumulateBackground(IplImage *I, int number=0);
    39 void scaleHigh(float scale = HIGH_SCALE_NUM, int num = 0);
    40 void scaleLow(float scale = LOW_SCALE_NUM, int num = 0);
    41 void createModelsfromStats();
    42 void backgroundDiff(IplImage *I,IplImage *Imask, int num = 0);
    43
    44 #endif

         avg_background.cpp文件:

      1 // avg_background.cpp : 定义控制台应用程序的入口点。
    2 //
    3
    4 #include "stdafx.h"
    5 #include "avg_background.h"
    6
    7
    8 //GLOBALS
    9
    10 IplImage *IavgF[NUM_CAMERAS],*IdiffF[NUM_CAMERAS], *IprevF[NUM_CAMERAS], *IhiF[NUM_CAMERAS], *IlowF[NUM_CAMERAS];
    11 IplImage *Iscratch,*Iscratch2,*Igray1,*Igray2,*Igray3,*Imaskt;
    12 IplImage *Ilow1[NUM_CAMERAS],*Ilow2[NUM_CAMERAS],*Ilow3[NUM_CAMERAS],*Ihi1[NUM_CAMERAS],*Ihi2[NUM_CAMERAS],*Ihi3[NUM_CAMERAS];
    13
    14 float Icount[NUM_CAMERAS];
    15
    16 void AllocateImages(IplImage *I) //I is just a sample for allocation purposes
    17 {
    18 for(int i = 0; i<NUM_CAMERAS; i++){
    19 IavgF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
    20 IdiffF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
    21 IprevF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
    22 IhiF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
    23 IlowF[i] = cvCreateImage(cvGetSize(I), IPL_DEPTH_32F, 3 );
    24 Ilow1[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    25 Ilow2[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    26 Ilow3[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    27 Ihi1[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    28 Ihi2[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    29 Ihi3[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    30 cvZero(IavgF[i] );
    31 cvZero(IdiffF[i] );
    32 cvZero(IprevF[i] );
    33 cvZero(IhiF[i] );
    34 cvZero(IlowF[i] );
    35 Icount[i] = 0.00001; //Protect against divide by zero
    36 }
    37 Iscratch = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
    38 Iscratch2 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
    39 Igray1 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    40 Igray2 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    41 Igray3 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
    42 Imaskt = cvCreateImage( cvGetSize(I), IPL_DEPTH_8U, 1 );
    43
    44 cvZero(Iscratch);
    45 cvZero(Iscratch2 );
    46 }
    47
    48 void DeallocateImages()
    49 {
    50 for(int i=0; i<NUM_CAMERAS; i++){
    51 cvReleaseImage(&IavgF[i]);
    52 cvReleaseImage(&IdiffF[i] );
    53 cvReleaseImage(&IprevF[i] );
    54 cvReleaseImage(&IhiF[i] );
    55 cvReleaseImage(&IlowF[i] );
    56 cvReleaseImage(&Ilow1[i] );
    57 cvReleaseImage(&Ilow2[i] );
    58 cvReleaseImage(&Ilow3[i] );
    59 cvReleaseImage(&Ihi1[i] );
    60 cvReleaseImage(&Ihi2[i] );
    61 cvReleaseImage(&Ihi3[i] );
    62 }
    63 cvReleaseImage(&Iscratch);
    64 cvReleaseImage(&Iscratch2);
    65
    66 cvReleaseImage(&Igray1 );
    67 cvReleaseImage(&Igray2 );
    68 cvReleaseImage(&Igray3 );
    69
    70 cvReleaseImage(&Imaskt);
    71 }
    72
    73 // Accumulate the background statistics for one more frame
    74 // We accumulate the images, the image differences and the count of images for the
    75 // the routine createModelsfromStats() to work on after we're done accumulating N frames.
    76 // I Background image, 3 channel, 8u
    77 // number Camera number
    78 void accumulateBackground(IplImage *I, int number)
    79 {
    80 static int first = 1;
    81 cvCvtScale(I,Iscratch,1,0); //To float;#define cvCvtScale cvConvertScale #define cvScale cvConvertScale
    82 if (!first){
    83 cvAcc(Iscratch,IavgF[number]);//将2幅图像相加:IavgF[number]=IavgF[number]+Iscratch,IavgF[]里面装的是时间序列图片的累加
    84 cvAbsDiff(Iscratch,IprevF[number],Iscratch2);//将2幅图像相减:Iscratch2=abs(Iscratch-IprevF[number]);
    85 cvAcc(Iscratch2,IdiffF[number]);//IdiffF[]里面装的是图像差的累积和
    86 Icount[number] += 1.0;//累积的图片帧数计数
    87 }
    88 first = 0;
    89 cvCopy(Iscratch,IprevF[number]);//执行完该函数后,将当前帧数据保存为前一帧数据
    90 }
    91
    92 // Scale the average difference from the average image high acceptance threshold
    93 void scaleHigh(float scale, int num)//设定背景建模时的高阈值函数
    94 {
    95 cvConvertScale(IdiffF[num],Iscratch,scale); //Converts with rounding and saturation
    96 cvAdd(Iscratch,IavgF[num],IhiF[num]);//将平均累积图像与误差累积图像缩放scale倍然后再相加
    97 cvCvtPixToPlane( IhiF[num], Ihi1[num],Ihi2[num],Ihi3[num], 0 );//#define cvCvtPixToPlane cvSplit,且cvSplit是将一个多通道矩阵转换为几个单通道矩阵
    98 }
    99
    100 // Scale the average difference from the average image low acceptance threshold
    101 void scaleLow(float scale, int num)//设定背景建模时的低阈值函数
    102 {
    103 cvConvertScale(IdiffF[num],Iscratch,scale); //Converts with rounding and saturation
    104 cvSub(IavgF[num],Iscratch,IlowF[num]);//将平均累积图像与误差累积图像缩放scale倍然后再相减
    105 cvCvtPixToPlane( IlowF[num], Ilow1[num],Ilow2[num],Ilow3[num], 0 );
    106 }
    107
    108 //Once you've learned the background long enough, turn it into a background model
    109 void createModelsfromStats()
    110 {
    111 for(int i=0; i<NUM_CAMERAS; i++)
    112 {
    113 cvConvertScale(IavgF[i],IavgF[i],(double)(1.0/Icount[i]));//此处为求出累积求和图像的平均值
    114 cvConvertScale(IdiffF[i],IdiffF[i],(double)(1.0/Icount[i]));//此处为求出累计误差图像的平均值
    115 cvAddS(IdiffF[i],cvScalar(1.0,1.0,1.0),IdiffF[i]); //Make sure diff is always something,cvAddS是用于一个数值和一个标量相加
    116 scaleHigh(HIGH_SCALE_NUM,i);//HIGH_SCALE_NUM初始定义为7,其实就是一个倍数
    117 scaleLow(LOW_SCALE_NUM,i);//LOW_SCALE_NUM初始定义为6
    118 }
    119 }
    120
    121 // Create a binary: 0,255 mask where 255 means forground pixel
    122 // I Input image, 3 channel, 8u
    123 // Imask mask image to be created, 1 channel 8u
    124 // num camera number.
    125 //
    126 void backgroundDiff(IplImage *I,IplImage *Imask, int num) //Mask should be grayscale
    127 {
    128 cvCvtScale(I,Iscratch,1,0); //To float;
    129 //Channel 1
    130 cvCvtPixToPlane( Iscratch, Igray1,Igray2,Igray3, 0 );
    131 cvInRange(Igray1,Ilow1[num],Ihi1[num],Imask);//Igray1[]中相应的点在Ilow1[]和Ihi1[]之间时,Imask中相应的点为255(背景符合)
    132 //Channel 2
    133 cvInRange(Igray2,Ilow2[num],Ihi2[num],Imaskt);//也就是说对于每一幅图像的绝对值差小于绝对值差平均值的6倍或者大于绝对值差平均值的7倍被认为是前景图像
    134 cvOr(Imask,Imaskt,Imask);
    135 //Channel 3
    136 cvInRange(Igray3,Ilow3[num],Ihi3[num],Imaskt);//这里的固定阈值6和7太不合理了,还好工程后面可以根据实际情况手动调整!
    137 cvOr(Imask,Imaskt,Imask);
    138 //Finally, invert the results
    139 cvSubRS( Imask, cvScalar(255), Imask);//前景用255表示了,背景是用0表示
    140 }

     二、codebook算法工作原理

         考虑到简单背景减图法无法对动态的背景建模,有学者就提出了codebook算法。

         该算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元,每个码元有它的学习时最大最小阈值,检测时的最大最小阈值等成员。在背景建模期间,每当来了一幅新图片,对每个像素点进行码本匹配,也就是说如果该像素值在码本中某个码元的学习阈值内,则认为它离过去该对应点出现过的历史情况偏离不大,通过一定的像素值比较,如果满足条件,此时还可以更新对应点的学习阈值和检测阈值。如果新来的像素值对码本中每个码元都不匹配,则有可能是由于背景是动态的,所以我们需要为其建立一个新的码元,并且设置相应的码元成员变量。因此,在背景学习的过程中,每个像素点可以对应多个码元,这样就可以学到复杂的动态背景。

         关于codebook算法的代码和注释如下:

         cv_yuv_codebook.h文件:

     1 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    2 // Accumulate average and ~std (really absolute difference) image and use this to detect background and foreground
    3 //
    4 // Typical way of using this is to:
    5 // AllocateImages();
    6 ////loop for N images to accumulate background differences
    7 // accumulateBackground();
    8 ////When done, turn this into our avg and std model with high and low bounds
    9 // createModelsfromStats();
    10 ////Then use the function to return background in a mask (255 == foreground, 0 == background)
    11 // backgroundDiff(IplImage *I,IplImage *Imask, int num);
    12 ////Then tune the high and low difference from average image background acceptance thresholds
    13 // float scalehigh,scalelow; //Set these, defaults are 7 and 6. Note: scalelow is how many average differences below average
    14 // scaleHigh(scalehigh);
    15 // scaleLow(scalelow);
    16 ////That is, change the scale high and low bounds for what should be background to make it work.
    17 ////Then continue detecting foreground in the mask image
    18 // backgroundDiff(IplImage *I,IplImage *Imask, int num);
    19 //
    20 //NOTES: num is camera number which varies from 0 ... NUM_CAMERAS - 1. Typically you only have one camera, but this routine allows
    21 // you to index many.
    22 //
    23 #ifndef AVGSEG_
    24 #define AVGSEG_
    25
    26
    27 #include "cv.h" // define all of the opencv classes etc.
    28 #include "highgui.h"
    29 #include "cxcore.h"
    30
    31 //IMPORTANT DEFINES:
    32 #define NUM_CAMERAS 1 //This function can handle an array of cameras
    33 #define HIGH_SCALE_NUM 7.0 //How many average differences from average image on the high side == background
    34 #define LOW_SCALE_NUM 6.0 //How many average differences from average image on the low side == background
    35
    36 void AllocateImages(IplImage *I);
    37 void DeallocateImages();
    38 void accumulateBackground(IplImage *I, int number=0);
    39 void scaleHigh(float scale = HIGH_SCALE_NUM, int num = 0);
    40 void scaleLow(float scale = LOW_SCALE_NUM, int num = 0);
    41 void createModelsfromStats();
    42 void backgroundDiff(IplImage *I,IplImage *Imask, int num = 0);
    43
    44 #endif

         cv_yuv_codebook.cpp文件:

      1 ////////YUV CODEBOOK
    2 // Gary Bradski, July 14, 2005
    3
    4
    5 #include "stdafx.h"
    6 #include "cv_yuv_codebook.h"
    7
    8 //GLOBALS FOR ALL CAMERA MODELS
    9
    10 //For connected components:
    11 int CVCONTOUR_APPROX_LEVEL = 2; // Approx.threshold - the bigger it is, the simpler is the boundary
    12 int CVCLOSE_ITR = 1; // How many iterations of erosion and/or dialation there should be
    13 //#define CVPERIMSCALE 4 // image (width+height)/PERIMSCALE. If contour lenght < this, delete that contour
    14
    15 //For learning background
    16
    17 //Just some convienience macros
    18 #define CV_CVX_WHITE CV_RGB(0xff,0xff,0xff)
    19 #define CV_CVX_BLACK CV_RGB(0x00,0x00,0x00)
    20
    21
    22 ///////////////////////////////////////////////////////////////////////////////////
    23 // int updateCodeBook(uchar *p, codeBook &c, unsigned cbBounds)
    24 // Updates the codebook entry with a new data point
    25 //
    26 // p Pointer to a YUV pixel
    27 // c Codebook for this pixel
    28 // cbBounds Learning bounds for codebook (Rule of thumb: 10)
    29 // numChannels Number of color channels we're learning
    30 //
    31 // NOTES:
    32 // cvBounds must be of size cvBounds[numChannels]
    33 //
    34 // RETURN
    35 // codebook index
    36 int cvupdateCodeBook(uchar *p, codeBook &c, unsigned *cbBounds, int numChannels)
    37 {
    38
    39 if(c.numEntries == 0) c.t = 0;//说明每个像素如果遍历了的话至少对应一个码元
    40 c.t += 1; //Record learning event,遍历该像素点的次数加1
    41 //SET HIGH AND LOW BOUNDS
    42 int n;
    43 unsigned int high[3],low[3];
    44 for(n=0; n<numChannels; n++)//为该像素点的每个通道设置最大阈值和最小阈值,后面用来更新学习的高低阈值时有用
    45 {
    46 high[n] = *(p+n)+*(cbBounds+n);
    47 if(high[n] > 255) high[n] = 255;
    48 low[n] = *(p+n)-*(cbBounds+n);
    49 if(low[n] < 0) low[n] = 0;
    50 }
    51 int matchChannel;
    52 //SEE IF THIS FITS AN EXISTING CODEWORD
    53 int i;
    54 for(i=0; i<c.numEntries; i++)//需要对所有的码元进行扫描
    55 {
    56 matchChannel = 0;
    57 for(n=0; n<numChannels; n++)
    58 {
    59 //这个地方要非常小心,if条件不是下面表达的
    60 //if((c.cb[i]->min[n]-c.cb[i]->learnLow[n] <= *(p+n)) && (*(p+n) <= c.cb[i]->max[n]+c.cb[i]->learnHigh[n]))
    61 //原因是因为在每次建立一个新码元的时候,learnHigh[n]和learnLow[n]的范围就在max[n]和min[n]上扩展了cbBounds[n],所以说
    62 //learnHigh[n]和learnLow[n]的变化范围实际上比max[n]和min[n]的大
    63 if((c.cb[i]->learnLow[n] <= *(p+n)) && (*(p+n) <= c.cb[i]->learnHigh[n])) //Found an entry for this channel
    64 {
    65 matchChannel++;
    66 }
    67 }
    68 if(matchChannel == numChannels) //If an entry was found over all channels,找到了该元素此刻对应的码元
    69 {
    70 c.cb[i]->t_last_update = c.t;
    71 //adjust this codeword for the first channel
    72 //更新每个码元的最大最小阈值,因为这2个阈值在后面的前景分离过程要用到
    73 for(n=0; n<numChannels; n++)
    74 {
    75 if(c.cb[i]->max[n] < *(p+n))//用该点的像素值更新该码元的最大值,所以max[n]保存的是实际上历史出现过的最大像素值
    76 {
    77 c.cb[i]->max[n] = *(p+n);//因为这个for语句是在匹配成功了的条件阈值下的,所以一般来说改变后的max[n]和min[n]
    78 //也不会过学习的高低阈值,并且学习的高低阈值也一直在缓慢变化
    79 }
    80 else if(c.cb[i]->min[n] > *(p+n))//用该点的像素值更新该码元的最小值,所以min[n]保存的是实际上历史出现过的最小像素值
    81 {
    82 c.cb[i]->min[n] = *(p+n);
    83 }
    84 }
    85 break;//一旦找到了该像素的一个码元后就不用继续往后找了,加快算法速度。因为最多只有一个码元与之对应
    86 }
    87 }
    88
    89 //OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
    90 for(int s=0; s<c.numEntries; s++)
    91 {
    92 //This garbage is to track which codebook entries are going stale
    93 int negRun = c.t - c.cb[s]->t_last_update;//negRun表示码元没有更新的时间间隔
    94 if(c.cb[s]->stale < negRun) c.cb[s]->stale = negRun;//更新每个码元的statle
    95 }
    96
    97
    98 //ENTER A NEW CODE WORD IF NEEDED
    99 if(i == c.numEntries) //No existing code word found, make a new one,只有当该像素码本中的所有码元都不符合要求时才满足if条件
    100 {
    101 code_element **foo = new code_element* [c.numEntries+1];//创建一个新的码元序列
    102 for(int ii=0; ii<c.numEntries; ii++)
    103 {
    104 foo[ii] = c.cb[ii];//将码本前面所有的码元地址赋给foo
    105 }
    106 foo[c.numEntries] = new code_element;//创建一个新码元并赋给foo指针的下一个空位
    107 if(c.numEntries) delete [] c.cb;//
    108 c.cb = foo;
    109 for(n=0; n<numChannels; n++)//给新建立的码元结构体元素赋值
    110 {
    111 c.cb[c.numEntries]->learnHigh[n] = high[n];//当建立一个新码元时,用当前值附近cbBounds范围作为码元box的学习阈值
    112 c.cb[c.numEntries]->learnLow[n] = low[n];
    113 c.cb[c.numEntries]->max[n] = *(p+n);//当建立一个新码元时,用当前值作为码元box的最大最小边界值
    114 c.cb[c.numEntries]->min[n] = *(p+n);
    115 }
    116 c.cb[c.numEntries]->t_last_update = c.t;
    117 c.cb[c.numEntries]->stale = 0;//因为刚建立,所有为0
    118 c.numEntries += 1;//码元的个数加1
    119 }
    120
    121 //SLOWLY ADJUST LEARNING BOUNDS
    122 for(n=0; n<numChannels; n++)//每次遍历该像素点就将每个码元的学习最大阈值变大,最小阈值变小,但是都是缓慢变化的
    123 { //如果是新建立的码元,则if条件肯定不满足
    124 if(c.cb[i]->learnHigh[n] < high[n]) c.cb[i]->learnHigh[n] += 1;
    125 if(c.cb[i]->learnLow[n] > low[n]) c.cb[i]->learnLow[n] -= 1;
    126 }
    127
    128 return(i);//返回所找到码本中码元的索引
    129 }
    130
    131 ///////////////////////////////////////////////////////////////////////////////////
    132 // uchar cvbackgroundDiff(uchar *p, codeBook &c, int minMod, int maxMod)
    133 // Given a pixel and a code book, determine if the pixel is covered by the codebook
    134 //
    135 // p pixel pointer (YUV interleaved)
    136 // c codebook reference
    137 // numChannels Number of channels we are testing
    138 // maxMod Add this (possibly negative) number onto max level when code_element determining if new pixel is foreground
    139 // minMod Subract this (possible negative) number from min level code_element when determining if pixel is foreground
    140 //
    141 // NOTES:
    142 // minMod and maxMod must have length numChannels, e.g. 3 channels => minMod[3], maxMod[3].
    143 //
    144 // Return
    145 // 0 => background, 255 => foreground
    146 uchar cvbackgroundDiff(uchar *p, codeBook &c, int numChannels, int *minMod, int *maxMod)
    147 {
    148 int matchChannel;
    149 //SEE IF THIS FITS AN EXISTING CODEWORD
    150 int i;
    151 for(i=0; i<c.numEntries; i++)
    152 {
    153 matchChannel = 0;
    154 for(int n=0; n<numChannels; n++)
    155 {
    156 if((c.cb[i]->min[n] - minMod[n] <= *(p+n)) && (*(p+n) <= c.cb[i]->max[n] + maxMod[n]))
    157 {
    158 matchChannel++; //Found an entry for this channel
    159 }
    160 else
    161 {
    162 break;//加快速度,当一个通道不满足时提前结束
    163 }
    164 }
    165 if(matchChannel == numChannels)
    166 {
    167 break; //Found an entry that matched all channels,加快速度,当一个码元找到时,提前结束
    168 }
    169 }
    170 if(i >= c.numEntries) return(255);//255代表前景,因为所有的码元都不满足条件
    171 return(0);//0代表背景,因为至少有一个码元满足条件
    172 }
    173
    174
    175 //UTILITES/////////////////////////////////////////////////////////////////////////////////////
    176 /////////////////////////////////////////////////////////////////////////////////
    177 //int clearStaleEntries(codeBook &c)
    178 // After you've learned for some period of time, periodically call this to clear out stale codebook entries
    179 //
    180 //c Codebook to clean up
    181 //
    182 // Return
    183 // number of entries cleared
    184 int cvclearStaleEntries(codeBook &c)//对每一个码本进行检查
    185 {
    186 int staleThresh = c.t>>1;//阈值设置为访问该码元的次数的一半,经验值
    187 int *keep = new int [c.numEntries];
    188 int keepCnt = 0;
    189 //SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
    190 for(int i=0; i<c.numEntries; i++)
    191 {
    192 if(c.cb[i]->stale > staleThresh)//当在背景建模期间有一半的时间内,codebook的码元条目没有被访问,则该条目将被删除
    193 keep[i] = 0; //Mark for destruction
    194 else
    195 {
    196 keep[i] = 1; //Mark to keep,为1时,该码本的条目将被保留
    197 keepCnt += 1;//keepCnt记录了要保持的codebook的数目
    198 }
    199 }
    200 //KEEP ONLY THE GOOD
    201 c.t = 0; //Full reset on stale tracking
    202 code_element **foo = new code_element* [keepCnt];//重新建立一个码本的双指针
    203 int k=0;
    204 for(int ii=0; ii<c.numEntries; ii++)
    205 {
    206 if(keep[ii])
    207 {
    208 foo[k] = c.cb[ii];//要保持该码元的话就要把码元结构体复制到fook
    209 foo[k]->stale = 0; //We have to refresh these entries for next clearStale,不被访问的累加器stale重新赋值0
    210 foo[k]->t_last_update = 0;//
    211 k++;
    212 }
    213 }
    214 //CLEAN UP
    215 delete [] keep;
    216 delete [] c.cb;
    217 c.cb = foo;
    218 int numCleared = c.numEntries - keepCnt;//numCleared中保存的是被删除码元的个数
    219 c.numEntries = keepCnt;//最后新的码元数为保存下来码元的个数
    220 return(numCleared);//返回被删除的码元个数
    221 }
    222
    223 /////////////////////////////////////////////////////////////////////////////////
    224 //int countSegmentation(codeBook *c, IplImage *I)
    225 //
    226 //Count how many pixels are detected as foreground
    227 // c Codebook
    228 // I Image (yuv, 24 bits)
    229 // numChannels Number of channels we are testing
    230 // maxMod Add this (possibly negative) number onto max level when code_element determining if new pixel is foreground
    231 // minMod Subract this (possible negative) number from min level code_element when determining if pixel is foreground
    232 //
    233 // NOTES:
    234 // minMod and maxMod must have length numChannels, e.g. 3 channels => minMod[3], maxMod[3].
    235 //
    236 //Return
    237 // Count of fg pixels
    238 //
    239 int cvcountSegmentation(codeBook *c, IplImage *I, int numChannels, int *minMod, int *maxMod)
    240 {
    241 int count = 0,i;
    242 uchar *pColor;
    243 int imageLen = I->width * I->height;
    244
    245 //GET BASELINE NUMBER OF FG PIXELS FOR Iraw
    246 pColor = (uchar *)((I)->imageData);
    247 for(i=0; i<imageLen; i++)
    248 {
    249 if(cvbackgroundDiff(pColor, c[i], numChannels, minMod, maxMod))//对每一个像素点都要检测其是否为前景,如果是的话,计数器count就加1
    250 count++;
    251 pColor += 3;
    252 }
    253 return(count);//返回图像I的前景像素点的个数
    254 }
    255
    256
    257 ///////////////////////////////////////////////////////////////////////////////////////////
    258 //void cvconnectedComponents(IplImage *mask, int poly1_hull0, float perimScale, int *num, CvRect *bbs, CvPoint *centers)
    259 // This cleans up the forground segmentation mask derived from calls to cvbackgroundDiff
    260 //
    261 // mask Is a grayscale (8 bit depth) "raw" mask image which will be cleaned up
    262 //
    263 // OPTIONAL PARAMETERS:
    264 // poly1_hull0 If set, approximate connected component by (DEFAULT) polygon, or else convex hull (0)
    265 // perimScale Len = image (width+height)/perimScale. If contour len < this, delete that contour (DEFAULT: 4)
    266 // num Maximum number of rectangles and/or centers to return, on return, will contain number filled (DEFAULT: NULL)
    267 // bbs Pointer to bounding box rectangle vector of length num. (DEFAULT SETTING: NULL)
    268 // centers Pointer to contour centers vectore of length num (DEFULT: NULL)
    269 //
    270 void cvconnectedComponents(IplImage *mask, int poly1_hull0, float perimScale, int *num, CvRect *bbs, CvPoint *centers)
    271 {
    272 static CvMemStorage* mem_storage = NULL;
    273 static CvSeq* contours = NULL;
    274 //CLEAN UP RAW MASK
    275 //开运算作用:平滑轮廓,去掉细节,断开缺口
    276 cvMorphologyEx( mask, mask, NULL, NULL, CV_MOP_OPEN, CVCLOSE_ITR );//对输入mask进行开操作,CVCLOSE_ITR为开操作的次数,输出为mask图像
    277 //闭运算作用:平滑轮廓,连接缺口
    278 cvMorphologyEx( mask, mask, NULL, NULL, CV_MOP_CLOSE, CVCLOSE_ITR );//对输入mask进行闭操作,CVCLOSE_ITR为闭操作的次数,输出为mask图像
    279
    280 //FIND CONTOURS AROUND ONLY BIGGER REGIONS
    281 if( mem_storage==NULL ) mem_storage = cvCreateMemStorage(0);
    282 else cvClearMemStorage(mem_storage);
    283
    284 //CV_RETR_EXTERNAL=0是在types_c.h中定义的,CV_CHAIN_APPROX_SIMPLE=2也是在该文件中定义的
    285 CvContourScanner scanner = cvStartFindContours(mask,mem_storage,sizeof(CvContour),CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE);
    286 CvSeq* c;
    287 int numCont = 0;
    288 while( (c = cvFindNextContour( scanner )) != NULL )
    289 {
    290 double len = cvContourPerimeter( c );
    291 double q = (mask->height + mask->width) /perimScale; //calculate perimeter len threshold
    292 if( len < q ) //Get rid of blob if it's perimeter is too small
    293 {
    294 cvSubstituteContour( scanner, NULL );
    295 }
    296 else //Smooth it's edges if it's large enough
    297 {
    298 CvSeq* c_new;
    299 if(poly1_hull0) //Polygonal approximation of the segmentation
    300 c_new = cvApproxPoly(c,sizeof(CvContour),mem_storage,CV_POLY_APPROX_DP, CVCONTOUR_APPROX_LEVEL,0);
    301 else //Convex Hull of the segmentation
    302 c_new = cvConvexHull2(c,mem_storage,CV_CLOCKWISE,1);
    303 cvSubstituteContour( scanner, c_new );
    304 numCont++;
    305 }
    306 }
    307 contours = cvEndFindContours( &scanner );
    308
    309 // PAINT THE FOUND REGIONS BACK INTO THE IMAGE
    310 cvZero( mask );
    311 IplImage *maskTemp;
    312 //CALC CENTER OF MASS AND OR BOUNDING RECTANGLES
    313 if(num != NULL)
    314 {
    315 int N = *num, numFilled = 0, i=0;
    316 CvMoments moments;
    317 double M00, M01, M10;
    318 maskTemp = cvCloneImage(mask);
    319 for(i=0, c=contours; c != NULL; c = c->h_next,i++ )
    320 {
    321 if(i < N) //Only process up to *num of them
    322 {
    323 cvDrawContours(maskTemp,c,CV_CVX_WHITE, CV_CVX_WHITE,-1,CV_FILLED,8);
    324 //Find the center of each contour
    325 if(centers != NULL)
    326 {
    327 cvMoments(maskTemp,&moments,1);
    328 M00 = cvGetSpatialMoment(&moments,0,0);
    329 M10 = cvGetSpatialMoment(&moments,1,0);
    330 M01 = cvGetSpatialMoment(&moments,0,1);
    331 centers[i].x = (int)(M10/M00);
    332 centers[i].y = (int)(M01/M00);
    333 }
    334 //Bounding rectangles around blobs
    335 if(bbs != NULL)
    336 {
    337 bbs[i] = cvBoundingRect(c);
    338 }
    339 cvZero(maskTemp);
    340 numFilled++;
    341 }
    342 //Draw filled contours into mask
    343 cvDrawContours(mask,c,CV_CVX_WHITE,CV_CVX_WHITE,-1,CV_FILLED,8); //draw to central mask
    344 } //end looping over contours
    345 *num = numFilled;
    346 cvReleaseImage( &maskTemp);
    347 }
    348 //ELSE JUST DRAW PROCESSED CONTOURS INTO THE MASK
    349 else
    350 {
    351 for( c=contours; c != NULL; c = c->h_next )
    352 {
    353 cvDrawContours(mask,c,CV_CVX_WHITE, CV_CVX_BLACK,-1,CV_FILLED,8);
    354 }
    355 }
    356 }

    三、2种算法进行对比。

         Learning Opencv的作者将这两种算法做了下对比,用的视频是有风吹动树枝的动态背景,一段时间过后的前景是视频中移动的手。

         当然在这个工程中,作者除了体现上述简单背景差法和codobook算法的一些原理外,还引入了很多细节来优化前景分割效果。比如说误差计算时的方差和协方差计算加速方法,消除像素点内长时间没有被访问过的码元,对检测到的粗糙原始前景图用连通域分析法清楚噪声,其中引入了形态学中的几种操作,使用多边形拟合前景轮廓等细节处理。

         在看作者代码前,最好先看下下面几个变量的物理含义。

         maxMod[n]:用训练好的背景模型进行前景检测时用到,判断点是否小于max[n] + maxMod[n])。

         minMod[n]:用训练好的背景模型进行前景检测时用到,判断点是否小于min[n] -minMod[n])。

         cbBounds*:训练背景模型时用到,可以手动输入该参数,这个数主要是配合high[n]和low[n]来用的。

         learnHigh[n]:背景学习过程中当一个新像素来时用来判断是否在已有的码元中,是阈值的上界部分。

         learnLow[n]:背景学习过程中当一个新像素来时用来判断是否在已有的码元中,是阈值的下界部分。

         max[n]: 背景学习过程中每个码元学习到的最大值,在前景分割时配合maxMod[n]用的。

         min[n]: 背景学习过程中每个码元学习到的最小值,在前景分割时配合minMod[n]用的。

         high[n]:背景学习过程中用来调整learnHigh[n]的,如果learnHigh[n]<high[n],则learnHigh[n]缓慢加1

         low[n]: 背景学习过程中用来调整learnLow[n]的,如果learnLow[n]>Low[n],则learnLow[缓慢减1

         该工程带主函数部分代码和注释如下:

    #include "stdafx.h"

    #include "cv.h"
    #include "highgui.h"
    #include <stdio.h>
    #include <stdlib.h>
    #include <ctype.h>
    #include "avg_background.h"
    #include "cv_yuv_codebook.h"

    //VARIABLES for CODEBOOK METHOD:
    codeBook *cB; //This will be our linear model of the image, a vector
    //of lengh = height*width
    int maxMod[CHANNELS]; //Add these (possibly negative) number onto max
    // level when code_element determining if new pixel is foreground
    int minMod[CHANNELS]; //Subract these (possible negative) number from min
    //level code_element when determining if pixel is foreground
    unsigned cbBounds[CHANNELS]; //Code Book bounds for learning
    bool ch[CHANNELS]; //This sets what channels should be adjusted for background bounds
    int nChannels = CHANNELS;
    int imageLen = 0;
    uchar *pColor; //YUV pointer

    void help() {
    printf("\nLearn background and find foreground using simple average and average difference learning method:\n"
    "\nUSAGE:\n ch9_background startFrameCollection# endFrameCollection# [movie filename, else from camera]\n"
    "If from AVI, then optionally add HighAvg, LowAvg, HighCB_Y LowCB_Y HighCB_U LowCB_U HighCB_V LowCB_V\n\n"
    "***Keep the focus on the video windows, NOT the consol***\n\n"
    "INTERACTIVE PARAMETERS:\n"
    "\tESC,q,Q - quit the program\n"
    "\th - print this help\n"
    "\tp - pause toggle\n"
    "\ts - single step\n"
    "\tr - run mode (single step off)\n"
    "=== AVG PARAMS ===\n"
    "\t- - bump high threshold UP by 0.25\n"
    "\t= - bump high threshold DOWN by 0.25\n"
    "\t[ - bump low threshold UP by 0.25\n"
    "\t] - bump low threshold DOWN by 0.25\n"
    "=== CODEBOOK PARAMS ===\n"
    "\ty,u,v- only adjust channel 0(y) or 1(u) or 2(v) respectively\n"
    "\ta - adjust all 3 channels at once\n"
    "\tb - adjust both 2 and 3 at once\n"
    "\ti,o - bump upper threshold up,down by 1\n"
    "\tk,l - bump lower threshold up,down by 1\n"
    );
    }

    //
    //USAGE: ch9_background startFrameCollection# endFrameCollection# [movie filename, else from camera]
    //If from AVI, then optionally add HighAvg, LowAvg, HighCB_Y LowCB_Y HighCB_U LowCB_U HighCB_V LowCB_V
    //
    int main(int argc, char** argv)
    {
    IplImage* rawImage = 0, *yuvImage = 0; //yuvImage is for codebook method
    IplImage *ImaskAVG = 0,*ImaskAVGCC = 0;
    IplImage *ImaskCodeBook = 0,*ImaskCodeBookCC = 0;
    CvCapture* capture = 0;

    int startcapture = 1;
    int endcapture = 30;
    int c,n;

    maxMod[0] = 3; //Set color thresholds to default values
    minMod[0] = 10;
    maxMod[1] = 1;
    minMod[1] = 1;
    maxMod[2] = 1;
    minMod[2] = 1;
    float scalehigh = HIGH_SCALE_NUM;//默认值为6
    float scalelow = LOW_SCALE_NUM;//默认值为7

    if(argc < 3) {//只有1个参数或者没有参数时,输出错误,并提示help信息,因为该程序本身就算进去了一个参数
    printf("ERROR: Too few parameters\n");
    help();
    }else{//至少有2个参数才算正确
    if(argc == 3){//输入为2个参数的情形是从摄像头输入数据
    printf("Capture from Camera\n");
    capture = cvCaptureFromCAM( 0 );
    }
    else {//输入大于2个参数时是从文件中读入视频数据
    printf("Capture from file %s\n",argv[3]);//第三个参数是读入视频文件的文件名
    // capture = cvCaptureFromFile( argv[3] );
    capture = cvCreateFileCapture( argv[3] );
    if(!capture) { printf("Couldn't open %s\n",argv[3]); return -1;}//读入视频文件失败
    }
    if(isdigit(argv[1][0])) { //Start from of background capture
    startcapture = atoi(argv[1]);//第一个参数表示视频开始的背景训练时的帧,默认是1
    printf("startcapture = %d\n",startcapture);
    }
    if(isdigit(argv[2][0])) { //End frame of background capture
    endcapture = atoi(argv[2]);//第二个参数表示的结束背景训练时的,默认为30
    printf("endcapture = %d\n");
    }
    if(argc > 4){ //See if parameters are set from command line,输入多于4个参数表示后面的算法中用到的参数在这里直接输入
    //FOR AVG MODEL
    if(argc >= 5){
    if(isdigit(argv[4][0])){
    scalehigh = (float)atoi(argv[4]);
    }
    }
    if(argc >= 6){
    if(isdigit(argv[5][0])){
    scalelow = (float)atoi(argv[5]);
    }
    }
    //FOR CODEBOOK MODEL, CHANNEL 0
    if(argc >= 7){
    if(isdigit(argv[6][0])){
    maxMod[0] = atoi(argv[6]);
    }
    }
    if(argc >= 8){
    if(isdigit(argv[7][0])){
    minMod[0] = atoi(argv[7]);
    }
    }
    //Channel 1
    if(argc >= 9){
    if(isdigit(argv[8][0])){
    maxMod[1] = atoi(argv[8]);
    }
    }
    if(argc >= 10){
    if(isdigit(argv[9][0])){
    minMod[1] = atoi(argv[9]);
    }
    }
    //Channel 2
    if(argc >= 11){
    if(isdigit(argv[10][0])){
    maxMod[2] = atoi(argv[10]);
    }
    }
    if(argc >= 12){
    if(isdigit(argv[11][0])){
    minMod[2] = atoi(argv[11]);
    }
    }
    }
    }

    //MAIN PROCESSING LOOP:
    bool pause = false;
    bool singlestep = false;

    if( capture )
    {
    cvNamedWindow( "Raw", 1 );//原始视频图像
    cvNamedWindow( "AVG_ConnectComp",1);//平均法连通区域分析后的图像
    cvNamedWindow( "ForegroundCodeBook",1);//codebook法后图像
    cvNamedWindow( "CodeBook_ConnectComp",1);//codebook法连通区域分析后的图像
    cvNamedWindow( "ForegroundAVG",1);//平均法后图像
    int i = -1;

    for(;;)
    {
    if(!pause){
    // if( !cvGrabFrame( capture ))
    // break;
    // rawImage = cvRetrieveFrame( capture );
    rawImage = cvQueryFrame( capture );
    ++i;//count it
    // printf("%d\n",i);
    if(!rawImage)
    break;
    //REMOVE THIS FOR GENERAL OPERATION, JUST A CONVIENIENCE WHEN RUNNING WITH THE SMALL tree.avi file
    if(i == 56){//程序开始运行几十帧后自动暂停,以便后面好手动调整参数
    pause = 1;
    printf("\n\nVideo paused for your convienience at frame 50 to work with demo\n"
    "You may adjust parameters, single step or continue running\n\n");
    help();
    }
    }
    if(singlestep){
    pause = true;
    }
    //First time:
    if(0 == i) {
    printf("\n . . . wait for it . . .\n"); //Just in case you wonder why the image is white at first
    //AVG METHOD ALLOCATION
    AllocateImages(rawImage);//为算法的使用分配内存
    scaleHigh(scalehigh);//设定背景建模时的高阈值函数
    scaleLow(scalelow);//设定背景建模时的低阈值函数
    ImaskAVG = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );
    ImaskAVGCC = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );
    cvSet(ImaskAVG,cvScalar(255));
    //CODEBOOK METHOD ALLOCATION:
    yuvImage = cvCloneImage(rawImage);
    ImaskCodeBook = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );//用来装前景背景图的,当然只要一个通道的图像即可
    ImaskCodeBookCC = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );
    cvSet(ImaskCodeBook,cvScalar(255));
    imageLen = rawImage->width*rawImage->height;
    cB = new codeBook [imageLen];//创建一个码本cB数组,每个像素对应一个码本
    for(int f = 0; f<imageLen; f++)
    {
    cB[f].numEntries = 0;//每个码本的初始码元个数赋值为0
    }
    for(int nc=0; nc<nChannels;nc++)
    {
    cbBounds[nc] = 10; //Learning bounds factor,初始值为10
    }
    ch[0] = true; //Allow threshold setting simultaneously for all channels
    ch[1] = true;
    ch[2] = true;
    }
    //If we've got an rawImage and are good to go:
    if( rawImage )
    {
    cvCvtColor( rawImage, yuvImage, CV_BGR2YCrCb );//YUV For codebook method
    //This is where we build our background model
    if( !pause && i >= startcapture && i < endcapture ){
    //LEARNING THE AVERAGE AND AVG DIFF BACKGROUND
    accumulateBackground(rawImage);//平均法累加过程
    //LEARNING THE CODEBOOK BACKGROUND
    pColor = (uchar *)((yuvImage)->imageData);//yuvImage矩阵的首位置
    for(int c=0; c<imageLen; c++)
    {
    cvupdateCodeBook(pColor, cB[c], cbBounds, nChannels);//codebook算法建模过程
    pColor += 3;
    }
    }
    //When done, create the background model
    if(i == endcapture){
    createModelsfromStats();//平均法建模过程
    }
    //Find the foreground if any
    if(i >= endcapture) {//endcapture帧后开始检测前景
    //FIND FOREGROUND BY AVG METHOD:
    backgroundDiff(rawImage,ImaskAVG);
    cvCopy(ImaskAVG,ImaskAVGCC);
    cvconnectedComponents(ImaskAVGCC);//平均法中的前景清除
    //FIND FOREGROUND BY CODEBOOK METHOD
    uchar maskPixelCodeBook;
    pColor = (uchar *)((yuvImage)->imageData); //3 channel yuv image
    uchar *pMask = (uchar *)((ImaskCodeBook)->imageData); //1 channel image
    for(int c=0; c<imageLen; c++)
    {
    maskPixelCodeBook = cvbackgroundDiff(pColor, cB[c], nChannels, minMod, maxMod);//前景返回255,背景返回0
    *pMask++ = maskPixelCodeBook;//将前景检测的结果返回到ImaskCodeBook中
    pColor += 3;
    }
    //This part just to visualize bounding boxes and centers if desired
    cvCopy(ImaskCodeBook,ImaskCodeBookCC);
    cvconnectedComponents(ImaskCodeBookCC);//codebook算法中的前景清除
    }
    //Display
    cvShowImage( "Raw", rawImage );//除了这张是彩色图外,另外4张都是黑白图
    cvShowImage( "AVG_ConnectComp",ImaskAVGCC);
    cvShowImage( "ForegroundAVG",ImaskAVG);
    cvShowImage( "ForegroundCodeBook",ImaskCodeBook);
    cvShowImage( "CodeBook_ConnectComp",ImaskCodeBookCC);

    //USER INPUT:
    c = cvWaitKey(10)&0xFF;
    //End processing on ESC, q or Q
    if(c == 27 || c == 'q' | c == 'Q')
    break;
    //Else check for user input
    switch(c)
    {
    case 'h':
    help();
    break;
    case 'p':
    pause ^= 1;
    break;
    case 's':
    singlestep = 1;
    pause = false;
    break;
    case 'r':
    pause = false;
    singlestep = false;
    break;
    //AVG BACKROUND PARAMS
    case '-'://调整scalehigh的参数,scalehigh的物理意义是误差累加的影响因子,其倒数为缩放倍数,加0.25实际上是减小其影响力
    if(i > endcapture){
    scalehigh += 0.25;
    printf("AVG scalehigh=%f\n",scalehigh);
    scaleHigh(scalehigh);
    }
    break;
    case '='://scalehigh减少2.5是增加其影响力
    if(i > endcapture){
    scalehigh -= 0.25;
    printf("AVG scalehigh=%f\n",scalehigh);
    scaleHigh(scalehigh);
    }
    break;
    case '[':
    if(i > endcapture){//设置设定背景建模时的低阈值函数,同上
    scalelow += 0.25;
    printf("AVG scalelow=%f\n",scalelow);
    scaleLow(scalelow);
    }
    break;
    case ']':
    if(i > endcapture){
    scalelow -= 0.25;
    printf("AVG scalelow=%f\n",scalelow);
    scaleLow(scalelow);
    }
    break;
    //CODEBOOK PARAMS
    case 'y':
    case '0'://激活y通道
    ch[0] = 1;
    ch[1] = 0;
    ch[2] = 0;
    printf("CodeBook YUV Channels active: ");
    for(n=0; n<nChannels; n++)
    printf("%d, ",ch[n]);
    printf("\n");
    break;
    case 'u':
    case '1'://激活u通道
    ch[0] = 0;
    ch[1] = 1;
    ch[2] = 0;
    printf("CodeBook YUV Channels active: ");
    for(n=0; n<nChannels; n++)
    printf("%d, ",ch[n]);
    printf("\n");
    break;
    case 'v':
    case '2'://激活v通道
    ch[0] = 0;
    ch[1] = 0;
    ch[2] = 1;
    printf("CodeBook YUV Channels active: ");
    for(n=0; n<nChannels; n++)
    printf("%d, ",ch[n]);
    printf("\n");
    break;
    case 'a': //All
    case '3'://激活所有通道
    ch[0] = 1;
    ch[1] = 1;
    ch[2] = 1;
    printf("CodeBook YUV Channels active: ");
    for(n=0; n<nChannels; n++)
    printf("%d, ",ch[n]);
    printf("\n");
    break;
    case 'b': //both u and v together
    ch[0] = 0;
    ch[1] = 1;
    ch[2] = 1;
    printf("CodeBook YUV Channels active: ");
    for(n=0; n<nChannels; n++)
    printf("%d, ",ch[n]);
    printf("\n");
    break;
    case 'i': //modify max classification bounds (max bound goes higher)
    for(n=0; n<nChannels; n++){//maxMod和minMod是最大值和最小值跳动的阈值
    if(ch[n])
    maxMod[n] += 1;
    printf("%.4d,",maxMod[n]);
    }
    printf(" CodeBook High Side\n");
    break;
    case 'o': //modify max classification bounds (max bound goes lower)
    for(n=0; n<nChannels; n++){
    if(ch[n])
    maxMod[n] -= 1;
    printf("%.4d,",maxMod[n]);
    }
    printf(" CodeBook High Side\n");
    break;
    case 'k': //modify min classification bounds (min bound goes lower)
    for(n=0; n<nChannels; n++){
    if(ch[n])
    minMod[n] += 1;
    printf("%.4d,",minMod[n]);
    }
    printf(" CodeBook Low Side\n");
    break;
    case 'l': //modify min classification bounds (min bound goes higher)
    for(n=0; n<nChannels; n++){
    if(ch[n])
    minMod[n] -= 1;
    printf("%.4d,",minMod[n]);
    }
    printf(" CodeBook Low Side\n");
    break;
    }

    }
    }
    cvReleaseCapture( &capture );
    cvDestroyWindow( "Raw" );
    cvDestroyWindow( "ForegroundAVG" );
    cvDestroyWindow( "AVG_ConnectComp");
    cvDestroyWindow( "ForegroundCodeBook");
    cvDestroyWindow( "CodeBook_ConnectComp");
    DeallocateImages();//释放平均法背景建模过程中用到的内存
    if(yuvImage) cvReleaseImage(&yuvImage);
    if(ImaskAVG) cvReleaseImage(&ImaskAVG);
    if(ImaskAVGCC) cvReleaseImage(&ImaskAVGCC);
    if(ImaskCodeBook) cvReleaseImage(&ImaskCodeBook);
    if(ImaskCodeBookCC) cvReleaseImage(&ImaskCodeBookCC);
    delete [] cB;
    }
    else{ printf("\n\nDarn, Something wrong with the parameters\n\n"); help();
    }
    return 0;
    }

     

         运行结果截图如下:

         训练过程视频原图截图:

        

     

         测试过程视频原图截图:

        

     

         前景检测过程截图:

        

     

         可以看到左边2幅截图的对比,codebook算法的效果明显比简单减图法要好,手型比较清晰些。

     

     四、参考文献

          Bradski, G. and A. Kaehler (2008). Learning OpenCV: Computer vision with the OpenCV library, O'Reilly Media.

     

     

  • 相关阅读:
    202103226-1 编程作业
    MSF原则
    介绍
    4 20210412-1 原型设计作业
    案例分析作业
    第二次编程
    阅读任务
    自我介绍
    案例分析作业
    阅读任务
  • 原文地址:https://www.cnblogs.com/tornadomeet/p/2438158.html
Copyright © 2011-2022 走看看