zoukankan      html  css  js  c++  java
  • 浅学sklearn库之各分类算法实践

    各分类算法:

    KNN

    from sklearn.neighbors import KNeighborsClassifier
    import numpy as np
    
    
    def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据
        model = KNeighborsClassifier(n_neighbors=10)#默认为5
        model.fit(X,y)
    
        predicted = model.predict(XX)
        return predicted

    SVM

    from sklearn.svm import SVC
    
    def SVM(X,y,XX):
        
        model = SVC(c=5.0)
        model.fit(X,y)
    
        predicted = model.predict(XX)
        return predicted

    LR

    from sklearn.linear_model import LogisticRegression
    
    def LR(X,y,XX):
        
        model = LogisticRegression()
        model.fit(X,y)
    
        predicted = model.predict(XX)
        return predicted

    决策树

    from sklearn.tree import DecisionTreeClassifier
    
    def CTRA(X,y,XX):
        model = DecisionTreeClassifier()
        model.fit(X,y)
    
        predicted = model.predict(XX)
        return predicted
       

    朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率。

    from sklearn.naive_bayes import GaussianNB
    from sklearn.naive_bayes import MultinomialNB
    
    def GNB(X,y,XX):
        
    
        model =GaussianNB()
        model.fit(X,y)
        
        predicted = model.predict(XX)
        return predicted
    
    def MNB(X,y,XX):
        
        model = MultinomialNB()
        model.fit(X,y)
    
        predicted = model.predict(XX
        return predicted
      


  • 相关阅读:
    HTTP状态码
    HTTP详解教程 / HTTP 响应头信息 HTTP 响应头信息
    HTTP请求方法
    HTTP 消息结构
    HTTP 简介
    Session 工作原理
    CSS 布局
    css float 浮动
    CSS 布局
    css position定位
  • 原文地址:https://www.cnblogs.com/tosouth/p/4752638.html
Copyright © 2011-2022 走看看