大意: 给定$nm$字符串矩阵. 若一个子矩形每一行重排后可以满足每行每列都是回文, 那么它为好矩形. 求所有好矩形个数.
一个矩形合法等价于每一行出现次数为奇数的最多只有一个字符, 并且对称的两行对应字符出现次数要完全相等.
那么直接暴力枚举左右边界, 把每个字符的出现次数$hash$一下, 这样就转化为给定序列, 求回文子串个数. 这是manacher算法经典应用, 套板子即可.
暴力计算次数的话$O(26n^3)$竟然没卡过去, 改了好久最后位运算优化到$O(n^3)$才过.
#include <iostream> #include <random> #include <map> #include <cstdio> #include <algorithm> #include <string.h> #define PER(i,a,n) for(int i=n;i>=a;--i) #define REP(i,a,n) for(int i=a;i<=n;++i) #define hr puts("") using namespace std; typedef long long ll; const int N = 1e3+10, P = 998244353; int n, m, rad[N], fac[N]; int a[N], b[N], g[N]; char s[N][N]; void manacher(int *a, int n) { for (int i=1,j=0,k=-1; i<=n; i+=k) { while (a[i-j-1]==a[i+j+1]) ++j; rad[i] = j; for (k=1; k<=rad[i]&&rad[i-k]!=rad[i]-k; ++k) { rad[i+k] = min(rad[i-k], rad[i]-k); } j = max(j-k, 0); } } int calc(int *a, int n) { if (n<=0) return 0; b[1] = P+1; REP(i,1,n) { b[i*2] = a[i]; b[i*2+1] = P+1; } int ans = n; n = 2*n+1, b[n+1] = P+2; manacher(b,n); REP(i,1,n) ans += rad[i]/2; return ans; } int main() { fac[0] = 1; REP(i,1,30) fac[i] = fac[i-1]*991ll%P; scanf("%d%d", &n, &m); REP(i,1,n) scanf("%s",s[i]+1); ll ans = 0; REP(L,1,m) { REP(i,0,n) a[i] = g[i] = 0; REP(R,L,m) { int now = 0; REP(i,1,n) { a[i] = (a[i]+fac[s[i][R]-'a'])%P; g[i] ^= 1<<s[i][R]-'a'; if (g[i]&(g[i]-1)) { ans += calc(a+now,i-1-now); now = i; } } ans += calc(a+now,n-now); } } printf("%lld ", ans); }