LeNet
模型特点
结构模型
图1-1 LeNet结构示意
网络层介绍
对于卷积层,其计算公式为
其中K表示由L层到L+1层要产生的feature的数量,表示“卷积核”,表示偏置,也就是bias,
令卷积核的大小为5*5,总共就有6*(5*5+1)=156个参数,
对于卷积层C1,每个像素都与前一层的5*5个像素和1个bias有连接,
所以总共有156*28*28=122304个连接(connection)。
对于LeNet5,S2这个pooling层是对C1中的2*2区域内的像素求和再加上一个偏置,
然后将这个结果再做一次映射(sigmoid等函数),所以相当于对S1做了降维,此处共有6*2=12个参数。
S2中的每个像素都与C1中的2*2个像素和1个偏置相连接,所以有6*5*14*14=5880个连接(connection)。
除此外,pooling层还有max-pooling和mean-pooling这两种实现,
max-pooling即取2*2区域内最大的像素,而mean-pooling即取2*2区域内像素的均值。
LeNet5最复杂的就是S2到C3层,其连接如下图所示。
前6个feature map与S2层相连的3个feature map相连接,
后面6个feature map与S2层相连的4个feature map相连接,
后面3个feature map与S2层部分不相连的4个feature map相连接,
最后一个与S2层的所有feature map相连。
卷积核大小依然为5*5,
所以总共有6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516个参数。
而图像大小为10*10,所以共有151600个连接。
S4是pooling层,窗口大小仍然是2*2,共计16个feature map,
所以32个参数,16*(25*4+25)=2000个连接。
C5是卷积层,总共120个feature map,每个feature map与S4层所有的feature map相连接,卷积核大小是5*5,
而S4层的feature map的大小也是5*5,所以C5的feature map就变成了1个点,共计有120(25*16+1)=48120个参数。
F6相当于MLP中的隐含层,有84个节点,所以有84*(120+1)=10164个参数。
F6层采用了正切函数,计算公式为,
输出层采用了RBF函数,即径向欧式距离函数,计算公式为,
以上就是LeNet5的结构。
表1 LeNet各层输入输出及资源使用