Union and union all in Pandas dataframe Python:
Union all of two data frames in pandas can be easily achieved by using concat() function. Lets see with an example. First lets create two data frames
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import pandas as pdimport numpy as np#Create a DataFramedf1 = { 'Subject':['semester1','semester2','semester3','semester4','semester1', 'semester2','semester3'], 'Score':[62,47,55,74,31,77,85]}df2 = { 'Subject':['semester1','semester2','semester3','semester4'], 'Score':[90,47,85,74]}df1 = pd.DataFrame(df1,columns=['Subject','Score'])df2 = pd.DataFrame(df2,columns=['Subject','Score'])df1df2 |
df1 will be

df2 will be

Union all of dataframes in pandas:

UNION ALL
concat() function in pandas creates the union of two dataframe.
|
1
2
3
|
""" Union all in pandas"""df_union_all= pd.concat([df1, df2])df_union_all |
union all of two dataframes df1 and df2 is created with duplicates. So the resultant dataframe will be

Union all of dataframes in pandas and reindex :
concat() function in pandas creates the union of two dataframe with ignore_index = True will reindex the dataframe
|
1
2
3
|
""" Union all with reindex in pandas"""df_union_all= pd.concat([df1, df2],ignore_index=True)df_union_all |
union all of two dataframes df1 and df2 is created with duplicates and the index is changed. So the resultant dataframe will be

Union of dataframes in pandas:

UNION
ref:http://www.datasciencemadesimple.com/union-and-union-all-in-pandas-dataframe-in-python-2/