zoukankan      html  css  js  c++  java
  • 调用WEKA包进行kmeans聚类(java)

    所用数据文件:data1.txt

    @RELATION data1
    
    
    @ATTRIBUTE one REAL
    @ATTRIBUTE two REAL
    
    
    
    
    @DATA
    0.184000 0.482000
    0.152000 0.540000
    0.152000 0.596000
    0.178000 0.626000
    0.206000 0.598000
    0.230000 0.562000
    0.224000 0.524000
    0.204000 0.540000
    0.190000 0.572000
    0.216000 0.608000
    0.240000 0.626000
    0.256000 0.584000
    0.272000 0.546000
    0.234000 0.468000
    0.222000 0.490000
    0.214000 0.414000
    0.252000 0.336000
    0.298000 0.336000
    0.316000 0.376000
    0.318000 0.434000
    0.308000 0.480000
    0.272000 0.408000
    0.272000 0.462000
    0.280000 0.524000
    0.296000 0.544000
    0.340000 0.534000
    0.346000 0.422000
    0.354000 0.356000
    0.160000 0.282000
    0.160000 0.282000
    0.156000 0.398000
    0.138000 0.466000
    0.154000 0.442000
    0.180000 0.334000
    0.184000 0.300000
    0.684000 0.420000
    0.678000 0.494000
    0.710000 0.592000
    0.716000 0.508000
    0.744000 0.528000
    0.716000 0.540000
    0.692000 0.540000
    0.696000 0.494000
    0.722000 0.466000
    0.738000 0.474000
    0.746000 0.484000
    0.750000 0.500000
    0.746000 0.440000
    0.718000 0.446000
    0.692000 0.466000
    0.746000 0.418000
    0.768000 0.460000
    0.272000 0.290000
    0.240000 0.376000
    0.212000 0.410000
    0.154000 0.564000
    0.252000 0.704000
    0.298000 0.714000
    0.314000 0.668000
    0.326000 0.566000
    0.344000 0.468000
    0.324000 0.632000
    0.164000 0.688000
    0.216000 0.684000
    0.392000 0.682000
    0.392000 0.628000
    0.392000 0.518000
    0.398000 0.502000
    0.392000 0.364000
    0.360000 0.308000
    0.326000 0.308000
    0.402000 0.342000
    0.404000 0.418000
    0.634000 0.458000
    0.650000 0.378000
    0.698000 0.348000
    0.732000 0.350000
    0.766000 0.364000
    0.800000 0.388000
    0.808000 0.428000
    0.826000 0.466000
    0.842000 0.510000
    0.842000 0.556000
    0.830000 0.594000
    0.772000 0.646000
    0.708000 0.654000
    0.632000 0.640000
    0.628000 0.564000
    0.624000 0.352000
    0.650000 0.286000
    0.694000 0.242000
    0.732000 0.214000
    0.832000 0.214000
    0.832000 0.264000
    0.796000 0.280000
    0.778000 0.288000
    0.770000 0.294000
    0.892000 0.342000
    0.910000 0.366000
    0.910000 0.394000
    0.872000 0.382000
    0.774000 0.314000
    0.718000 0.252000
    0.688000 0.284000
    0.648000 0.322000
    0.602000 0.460000
    0.596000 0.496000
    0.570000 0.550000
    0.564000 0.592000
    0.574000 0.624000
    0.582000 0.644000
    0.596000 0.664000
    0.662000 0.704000
    0.692000 0.722000
    0.710000 0.736000
    0.848000 0.732000
    0.888000 0.686000
    0.924000 0.514000
    0.914000 0.470000
    0.880000 0.492000
    0.848000 0.706000
    0.730000 0.736000
    0.676000 0.734000
    0.628000 0.732000
    0.782000 0.708000
    0.806000 0.674000
    0.830000 0.630000
    0.564000 0.730000
    0.554000 0.538000
    0.570000 0.502000
    0.572000 0.432000
    0.590000 0.356000
    0.652000 0.232000
    0.676000 0.178000
    0.684000 0.152000
    0.728000 0.172000
    0.758000 0.148000
    0.864000 0.176000
    0.646000 0.242000
    0.638000 0.254000
    0.766000 0.276000
    0.882000 0.278000
    0.900000 0.278000
    0.906000 0.302000
    0.892000 0.316000
    0.570000 0.324000
    0.798000 0.150000
    0.832000 0.114000
    0.714000 0.156000
    0.648000 0.154000
    0.644000 0.212000
    0.642000 0.250000
    0.658000 0.284000
    0.710000 0.296000
    0.794000 0.288000
    0.846000 0.260000
    0.856000 0.304000
    0.858000 0.392000
    0.858000 0.476000
    0.778000 0.640000
    0.736000 0.662000
    0.718000 0.690000
    0.634000 0.692000
    0.596000 0.710000
    0.570000 0.720000
    0.554000 0.732000
    0.548000 0.686000
    0.524000 0.740000
    0.598000 0.768000
    0.660000 0.796000
    

    前言:Kmeans是一种非常经典的聚类算法。它利用簇的中心到对象的距离来分配每个对象的簇所属关系。同时迭代的进行簇的中心的更新以及簇分配的更新,直到收敛。


    下面是调用weka包中实现的kmeans的代码


    package others;
    
    import java.io.File;
    
    import weka.clusterers.SimpleKMeans;
    import weka.core.DistanceFunction;
    import weka.core.Instances;
    import weka.core.converters.ArffLoader;
    
    public class ArrayListTest {
    
    	public static void main(String[] args){
    		Instances ins = null;
    		
    		SimpleKMeans KM = null;
    		DistanceFunction disFun = null;
    		
    		try {
    			// 读入样本数据
    			File file = new File("data/data1.txt");
    			ArffLoader loader = new ArffLoader();
    			loader.setFile(file);
    			ins = loader.getDataSet();
    			
    			// 初始化聚类器 (加载算法)
    			KM = new SimpleKMeans();
    			KM.setNumClusters(4); 		//设置聚类要得到的类别数量
    			KM.buildClusterer(ins);		//开始进行聚类
    			System.out.println(KM.preserveInstancesOrderTipText());
    			// 打印聚类结果
    			System.out.println(KM.toString());
    			
    		} catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    }




  • 相关阅读:
    harbor docker
    dns服务器
    k8s
    frps
    svn 搭建
    phpstrom 破解 转载https://www.jianshu.com/p/e71361b3bfee
    公开课
    k8s
    rsync各种备份
    定时任务
  • 原文地址:https://www.cnblogs.com/wenbaoli/p/5655747.html
Copyright © 2011-2022 走看看