zoukankan      html  css  js  c++  java
  • 调用WEKA包进行kmeans聚类(java)

    所用数据文件:data1.txt

    @RELATION data1
    
    
    @ATTRIBUTE one REAL
    @ATTRIBUTE two REAL
    
    
    
    
    @DATA
    0.184000 0.482000
    0.152000 0.540000
    0.152000 0.596000
    0.178000 0.626000
    0.206000 0.598000
    0.230000 0.562000
    0.224000 0.524000
    0.204000 0.540000
    0.190000 0.572000
    0.216000 0.608000
    0.240000 0.626000
    0.256000 0.584000
    0.272000 0.546000
    0.234000 0.468000
    0.222000 0.490000
    0.214000 0.414000
    0.252000 0.336000
    0.298000 0.336000
    0.316000 0.376000
    0.318000 0.434000
    0.308000 0.480000
    0.272000 0.408000
    0.272000 0.462000
    0.280000 0.524000
    0.296000 0.544000
    0.340000 0.534000
    0.346000 0.422000
    0.354000 0.356000
    0.160000 0.282000
    0.160000 0.282000
    0.156000 0.398000
    0.138000 0.466000
    0.154000 0.442000
    0.180000 0.334000
    0.184000 0.300000
    0.684000 0.420000
    0.678000 0.494000
    0.710000 0.592000
    0.716000 0.508000
    0.744000 0.528000
    0.716000 0.540000
    0.692000 0.540000
    0.696000 0.494000
    0.722000 0.466000
    0.738000 0.474000
    0.746000 0.484000
    0.750000 0.500000
    0.746000 0.440000
    0.718000 0.446000
    0.692000 0.466000
    0.746000 0.418000
    0.768000 0.460000
    0.272000 0.290000
    0.240000 0.376000
    0.212000 0.410000
    0.154000 0.564000
    0.252000 0.704000
    0.298000 0.714000
    0.314000 0.668000
    0.326000 0.566000
    0.344000 0.468000
    0.324000 0.632000
    0.164000 0.688000
    0.216000 0.684000
    0.392000 0.682000
    0.392000 0.628000
    0.392000 0.518000
    0.398000 0.502000
    0.392000 0.364000
    0.360000 0.308000
    0.326000 0.308000
    0.402000 0.342000
    0.404000 0.418000
    0.634000 0.458000
    0.650000 0.378000
    0.698000 0.348000
    0.732000 0.350000
    0.766000 0.364000
    0.800000 0.388000
    0.808000 0.428000
    0.826000 0.466000
    0.842000 0.510000
    0.842000 0.556000
    0.830000 0.594000
    0.772000 0.646000
    0.708000 0.654000
    0.632000 0.640000
    0.628000 0.564000
    0.624000 0.352000
    0.650000 0.286000
    0.694000 0.242000
    0.732000 0.214000
    0.832000 0.214000
    0.832000 0.264000
    0.796000 0.280000
    0.778000 0.288000
    0.770000 0.294000
    0.892000 0.342000
    0.910000 0.366000
    0.910000 0.394000
    0.872000 0.382000
    0.774000 0.314000
    0.718000 0.252000
    0.688000 0.284000
    0.648000 0.322000
    0.602000 0.460000
    0.596000 0.496000
    0.570000 0.550000
    0.564000 0.592000
    0.574000 0.624000
    0.582000 0.644000
    0.596000 0.664000
    0.662000 0.704000
    0.692000 0.722000
    0.710000 0.736000
    0.848000 0.732000
    0.888000 0.686000
    0.924000 0.514000
    0.914000 0.470000
    0.880000 0.492000
    0.848000 0.706000
    0.730000 0.736000
    0.676000 0.734000
    0.628000 0.732000
    0.782000 0.708000
    0.806000 0.674000
    0.830000 0.630000
    0.564000 0.730000
    0.554000 0.538000
    0.570000 0.502000
    0.572000 0.432000
    0.590000 0.356000
    0.652000 0.232000
    0.676000 0.178000
    0.684000 0.152000
    0.728000 0.172000
    0.758000 0.148000
    0.864000 0.176000
    0.646000 0.242000
    0.638000 0.254000
    0.766000 0.276000
    0.882000 0.278000
    0.900000 0.278000
    0.906000 0.302000
    0.892000 0.316000
    0.570000 0.324000
    0.798000 0.150000
    0.832000 0.114000
    0.714000 0.156000
    0.648000 0.154000
    0.644000 0.212000
    0.642000 0.250000
    0.658000 0.284000
    0.710000 0.296000
    0.794000 0.288000
    0.846000 0.260000
    0.856000 0.304000
    0.858000 0.392000
    0.858000 0.476000
    0.778000 0.640000
    0.736000 0.662000
    0.718000 0.690000
    0.634000 0.692000
    0.596000 0.710000
    0.570000 0.720000
    0.554000 0.732000
    0.548000 0.686000
    0.524000 0.740000
    0.598000 0.768000
    0.660000 0.796000
    

    前言:Kmeans是一种非常经典的聚类算法。它利用簇的中心到对象的距离来分配每个对象的簇所属关系。同时迭代的进行簇的中心的更新以及簇分配的更新,直到收敛。


    下面是调用weka包中实现的kmeans的代码


    package others;
    
    import java.io.File;
    
    import weka.clusterers.SimpleKMeans;
    import weka.core.DistanceFunction;
    import weka.core.Instances;
    import weka.core.converters.ArffLoader;
    
    public class ArrayListTest {
    
    	public static void main(String[] args){
    		Instances ins = null;
    		
    		SimpleKMeans KM = null;
    		DistanceFunction disFun = null;
    		
    		try {
    			// 读入样本数据
    			File file = new File("data/data1.txt");
    			ArffLoader loader = new ArffLoader();
    			loader.setFile(file);
    			ins = loader.getDataSet();
    			
    			// 初始化聚类器 (加载算法)
    			KM = new SimpleKMeans();
    			KM.setNumClusters(4); 		//设置聚类要得到的类别数量
    			KM.buildClusterer(ins);		//开始进行聚类
    			System.out.println(KM.preserveInstancesOrderTipText());
    			// 打印聚类结果
    			System.out.println(KM.toString());
    			
    		} catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    }




  • 相关阅读:
    初谈DHCP中继原理和配置
    css3渐变之linear-gradient与-webkit-linear-gradient写法异同
    mac svn 更新到新版本1.8
    mac显示所有文件、不产生.DS_Store文件
    mac自定义安装nodejs步骤
    nodejs 80端口监听失败及NODE_PATH不起作用的问题
    一种javascript链式多重继承的方式(__proto__原型链)
    apk反编译、smali修改、回编译笔记
    启用“关闭自动根证书更新”,解决Windows系统各种卡顿的问题(Visual studio 卡、远程桌面mstsc卡、SVN卡)
    SQL查询中关于索引使用的笔记
  • 原文地址:https://www.cnblogs.com/wenbaoli/p/5655747.html
Copyright © 2011-2022 走看看