zoukankan      html  css  js  c++  java
  • 调用WEKA包进行kmeans聚类(java)

    所用数据文件:data1.txt

    @RELATION data1
    
    
    @ATTRIBUTE one REAL
    @ATTRIBUTE two REAL
    
    
    
    
    @DATA
    0.184000 0.482000
    0.152000 0.540000
    0.152000 0.596000
    0.178000 0.626000
    0.206000 0.598000
    0.230000 0.562000
    0.224000 0.524000
    0.204000 0.540000
    0.190000 0.572000
    0.216000 0.608000
    0.240000 0.626000
    0.256000 0.584000
    0.272000 0.546000
    0.234000 0.468000
    0.222000 0.490000
    0.214000 0.414000
    0.252000 0.336000
    0.298000 0.336000
    0.316000 0.376000
    0.318000 0.434000
    0.308000 0.480000
    0.272000 0.408000
    0.272000 0.462000
    0.280000 0.524000
    0.296000 0.544000
    0.340000 0.534000
    0.346000 0.422000
    0.354000 0.356000
    0.160000 0.282000
    0.160000 0.282000
    0.156000 0.398000
    0.138000 0.466000
    0.154000 0.442000
    0.180000 0.334000
    0.184000 0.300000
    0.684000 0.420000
    0.678000 0.494000
    0.710000 0.592000
    0.716000 0.508000
    0.744000 0.528000
    0.716000 0.540000
    0.692000 0.540000
    0.696000 0.494000
    0.722000 0.466000
    0.738000 0.474000
    0.746000 0.484000
    0.750000 0.500000
    0.746000 0.440000
    0.718000 0.446000
    0.692000 0.466000
    0.746000 0.418000
    0.768000 0.460000
    0.272000 0.290000
    0.240000 0.376000
    0.212000 0.410000
    0.154000 0.564000
    0.252000 0.704000
    0.298000 0.714000
    0.314000 0.668000
    0.326000 0.566000
    0.344000 0.468000
    0.324000 0.632000
    0.164000 0.688000
    0.216000 0.684000
    0.392000 0.682000
    0.392000 0.628000
    0.392000 0.518000
    0.398000 0.502000
    0.392000 0.364000
    0.360000 0.308000
    0.326000 0.308000
    0.402000 0.342000
    0.404000 0.418000
    0.634000 0.458000
    0.650000 0.378000
    0.698000 0.348000
    0.732000 0.350000
    0.766000 0.364000
    0.800000 0.388000
    0.808000 0.428000
    0.826000 0.466000
    0.842000 0.510000
    0.842000 0.556000
    0.830000 0.594000
    0.772000 0.646000
    0.708000 0.654000
    0.632000 0.640000
    0.628000 0.564000
    0.624000 0.352000
    0.650000 0.286000
    0.694000 0.242000
    0.732000 0.214000
    0.832000 0.214000
    0.832000 0.264000
    0.796000 0.280000
    0.778000 0.288000
    0.770000 0.294000
    0.892000 0.342000
    0.910000 0.366000
    0.910000 0.394000
    0.872000 0.382000
    0.774000 0.314000
    0.718000 0.252000
    0.688000 0.284000
    0.648000 0.322000
    0.602000 0.460000
    0.596000 0.496000
    0.570000 0.550000
    0.564000 0.592000
    0.574000 0.624000
    0.582000 0.644000
    0.596000 0.664000
    0.662000 0.704000
    0.692000 0.722000
    0.710000 0.736000
    0.848000 0.732000
    0.888000 0.686000
    0.924000 0.514000
    0.914000 0.470000
    0.880000 0.492000
    0.848000 0.706000
    0.730000 0.736000
    0.676000 0.734000
    0.628000 0.732000
    0.782000 0.708000
    0.806000 0.674000
    0.830000 0.630000
    0.564000 0.730000
    0.554000 0.538000
    0.570000 0.502000
    0.572000 0.432000
    0.590000 0.356000
    0.652000 0.232000
    0.676000 0.178000
    0.684000 0.152000
    0.728000 0.172000
    0.758000 0.148000
    0.864000 0.176000
    0.646000 0.242000
    0.638000 0.254000
    0.766000 0.276000
    0.882000 0.278000
    0.900000 0.278000
    0.906000 0.302000
    0.892000 0.316000
    0.570000 0.324000
    0.798000 0.150000
    0.832000 0.114000
    0.714000 0.156000
    0.648000 0.154000
    0.644000 0.212000
    0.642000 0.250000
    0.658000 0.284000
    0.710000 0.296000
    0.794000 0.288000
    0.846000 0.260000
    0.856000 0.304000
    0.858000 0.392000
    0.858000 0.476000
    0.778000 0.640000
    0.736000 0.662000
    0.718000 0.690000
    0.634000 0.692000
    0.596000 0.710000
    0.570000 0.720000
    0.554000 0.732000
    0.548000 0.686000
    0.524000 0.740000
    0.598000 0.768000
    0.660000 0.796000
    

    前言:Kmeans是一种非常经典的聚类算法。它利用簇的中心到对象的距离来分配每个对象的簇所属关系。同时迭代的进行簇的中心的更新以及簇分配的更新,直到收敛。


    下面是调用weka包中实现的kmeans的代码


    package others;
    
    import java.io.File;
    
    import weka.clusterers.SimpleKMeans;
    import weka.core.DistanceFunction;
    import weka.core.Instances;
    import weka.core.converters.ArffLoader;
    
    public class ArrayListTest {
    
    	public static void main(String[] args){
    		Instances ins = null;
    		
    		SimpleKMeans KM = null;
    		DistanceFunction disFun = null;
    		
    		try {
    			// 读入样本数据
    			File file = new File("data/data1.txt");
    			ArffLoader loader = new ArffLoader();
    			loader.setFile(file);
    			ins = loader.getDataSet();
    			
    			// 初始化聚类器 (加载算法)
    			KM = new SimpleKMeans();
    			KM.setNumClusters(4); 		//设置聚类要得到的类别数量
    			KM.buildClusterer(ins);		//开始进行聚类
    			System.out.println(KM.preserveInstancesOrderTipText());
    			// 打印聚类结果
    			System.out.println(KM.toString());
    			
    		} catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    }




  • 相关阅读:
    BZOJ 4316: 小C的独立集 (仙人掌,树形DP)
    LOJ #2587. 「APIO2018」铁人两项 (圆方树,树形DP)
    BZOJ 5329: [Sdoi2018]战略游戏 (圆方树,树链的并)
    CF487E Tourists (圆方树,LCT)
    BZOJ 4873: [Shoi2017]寿司餐厅 最大权闭合图
    【转】python文件打开方式详解——a、a+、r+、w+区别
    【转】使用git将项目上传到github(最简单方法)
    整数型数组组合成字符串
    【转】浏览器中输入url后发生了什么
    去除列表中重复的元素
  • 原文地址:https://www.cnblogs.com/wenbaoli/p/5655747.html
Copyright © 2011-2022 走看看