zoukankan      html  css  js  c++  java
  • 调用WEKA包进行kmeans聚类(java)

    所用数据文件:data1.txt

    @RELATION data1
    
    
    @ATTRIBUTE one REAL
    @ATTRIBUTE two REAL
    
    
    
    
    @DATA
    0.184000 0.482000
    0.152000 0.540000
    0.152000 0.596000
    0.178000 0.626000
    0.206000 0.598000
    0.230000 0.562000
    0.224000 0.524000
    0.204000 0.540000
    0.190000 0.572000
    0.216000 0.608000
    0.240000 0.626000
    0.256000 0.584000
    0.272000 0.546000
    0.234000 0.468000
    0.222000 0.490000
    0.214000 0.414000
    0.252000 0.336000
    0.298000 0.336000
    0.316000 0.376000
    0.318000 0.434000
    0.308000 0.480000
    0.272000 0.408000
    0.272000 0.462000
    0.280000 0.524000
    0.296000 0.544000
    0.340000 0.534000
    0.346000 0.422000
    0.354000 0.356000
    0.160000 0.282000
    0.160000 0.282000
    0.156000 0.398000
    0.138000 0.466000
    0.154000 0.442000
    0.180000 0.334000
    0.184000 0.300000
    0.684000 0.420000
    0.678000 0.494000
    0.710000 0.592000
    0.716000 0.508000
    0.744000 0.528000
    0.716000 0.540000
    0.692000 0.540000
    0.696000 0.494000
    0.722000 0.466000
    0.738000 0.474000
    0.746000 0.484000
    0.750000 0.500000
    0.746000 0.440000
    0.718000 0.446000
    0.692000 0.466000
    0.746000 0.418000
    0.768000 0.460000
    0.272000 0.290000
    0.240000 0.376000
    0.212000 0.410000
    0.154000 0.564000
    0.252000 0.704000
    0.298000 0.714000
    0.314000 0.668000
    0.326000 0.566000
    0.344000 0.468000
    0.324000 0.632000
    0.164000 0.688000
    0.216000 0.684000
    0.392000 0.682000
    0.392000 0.628000
    0.392000 0.518000
    0.398000 0.502000
    0.392000 0.364000
    0.360000 0.308000
    0.326000 0.308000
    0.402000 0.342000
    0.404000 0.418000
    0.634000 0.458000
    0.650000 0.378000
    0.698000 0.348000
    0.732000 0.350000
    0.766000 0.364000
    0.800000 0.388000
    0.808000 0.428000
    0.826000 0.466000
    0.842000 0.510000
    0.842000 0.556000
    0.830000 0.594000
    0.772000 0.646000
    0.708000 0.654000
    0.632000 0.640000
    0.628000 0.564000
    0.624000 0.352000
    0.650000 0.286000
    0.694000 0.242000
    0.732000 0.214000
    0.832000 0.214000
    0.832000 0.264000
    0.796000 0.280000
    0.778000 0.288000
    0.770000 0.294000
    0.892000 0.342000
    0.910000 0.366000
    0.910000 0.394000
    0.872000 0.382000
    0.774000 0.314000
    0.718000 0.252000
    0.688000 0.284000
    0.648000 0.322000
    0.602000 0.460000
    0.596000 0.496000
    0.570000 0.550000
    0.564000 0.592000
    0.574000 0.624000
    0.582000 0.644000
    0.596000 0.664000
    0.662000 0.704000
    0.692000 0.722000
    0.710000 0.736000
    0.848000 0.732000
    0.888000 0.686000
    0.924000 0.514000
    0.914000 0.470000
    0.880000 0.492000
    0.848000 0.706000
    0.730000 0.736000
    0.676000 0.734000
    0.628000 0.732000
    0.782000 0.708000
    0.806000 0.674000
    0.830000 0.630000
    0.564000 0.730000
    0.554000 0.538000
    0.570000 0.502000
    0.572000 0.432000
    0.590000 0.356000
    0.652000 0.232000
    0.676000 0.178000
    0.684000 0.152000
    0.728000 0.172000
    0.758000 0.148000
    0.864000 0.176000
    0.646000 0.242000
    0.638000 0.254000
    0.766000 0.276000
    0.882000 0.278000
    0.900000 0.278000
    0.906000 0.302000
    0.892000 0.316000
    0.570000 0.324000
    0.798000 0.150000
    0.832000 0.114000
    0.714000 0.156000
    0.648000 0.154000
    0.644000 0.212000
    0.642000 0.250000
    0.658000 0.284000
    0.710000 0.296000
    0.794000 0.288000
    0.846000 0.260000
    0.856000 0.304000
    0.858000 0.392000
    0.858000 0.476000
    0.778000 0.640000
    0.736000 0.662000
    0.718000 0.690000
    0.634000 0.692000
    0.596000 0.710000
    0.570000 0.720000
    0.554000 0.732000
    0.548000 0.686000
    0.524000 0.740000
    0.598000 0.768000
    0.660000 0.796000
    

    前言:Kmeans是一种非常经典的聚类算法。它利用簇的中心到对象的距离来分配每个对象的簇所属关系。同时迭代的进行簇的中心的更新以及簇分配的更新,直到收敛。


    下面是调用weka包中实现的kmeans的代码


    package others;
    
    import java.io.File;
    
    import weka.clusterers.SimpleKMeans;
    import weka.core.DistanceFunction;
    import weka.core.Instances;
    import weka.core.converters.ArffLoader;
    
    public class ArrayListTest {
    
    	public static void main(String[] args){
    		Instances ins = null;
    		
    		SimpleKMeans KM = null;
    		DistanceFunction disFun = null;
    		
    		try {
    			// 读入样本数据
    			File file = new File("data/data1.txt");
    			ArffLoader loader = new ArffLoader();
    			loader.setFile(file);
    			ins = loader.getDataSet();
    			
    			// 初始化聚类器 (加载算法)
    			KM = new SimpleKMeans();
    			KM.setNumClusters(4); 		//设置聚类要得到的类别数量
    			KM.buildClusterer(ins);		//开始进行聚类
    			System.out.println(KM.preserveInstancesOrderTipText());
    			// 打印聚类结果
    			System.out.println(KM.toString());
    			
    		} catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    }




  • 相关阅读:
    JavaScript 获取CSS媒体查询信息
    拖拉事件
    JavaScript 中的正常任务与微任务
    IOS 采用https 协议访问接口
    将类数组 转化为数组
    合并两个数组的方法
    base64转码
    Promise 异步执行的同步操作
    proxy set 拦截
    VIm 一些常用的设置
  • 原文地址:https://www.cnblogs.com/wenbaoli/p/5655747.html
Copyright © 2011-2022 走看看