Perfect Squares |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 82 Accepted Submission(s): 59 |
Problem Description
A number x is called a perfect square if there exists an integer b satisfying x=b^2. There are many beautiful theorems about perfect squares in mathematics. Among which, Pythagoras Theorem is the most famous. It says that if the length of three sides of a right triangle is a, b and c respectively(a < b <c), then a^2 + b^2=c^2. In this problem, we also propose an interesting question about perfect squares. For a given n, we want you to calculate the number of different perfect squares mod 2^n. We call such number f(n) for brevity. For example, when n=2, the sequence of {i^2 mod 2^n} is 0, 1, 0, 1, 0……, so f(2)=2. Since f(n) may be quite large, you only need to output f(n) mod 10007.
|
Input
The first line contains a number T<=200, which indicates the number of test case. Then it follows T lines, each line is a positive number n(0<n<2*10^9).
|
Output
For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1) and y is f(x).
|
Sample Input
2 1 2 |
Sample Output
Case #1: 2 Case #2: 2 |
Source
2010 ACM-ICPC Multi-University Training Contest(9)——Host by HNU
|
Recommend
zhengfeng
|
/* 题意:如果给定n,存在一个是b,使得b^2=n,那么就称n为完美平方数,现在让你求,小于等于n^2的所有完美平方数mod 2^n的和 初步思路:看输出,这种题一般都是打表推公式的 打表结果: 2 2 3 4 7 12 23 44 87 172 343 684 1367 2732 5463 10924 21847 43692 87383 174764 奇数项是:F[n]=F[n-1]*2-1; 偶数项是:F[n]=F[n-1]*2-2; #错误:这种递推项是不行的,矩阵快速幂没法实现奇偶的转变 #补充:n为偶数,f[n]=(2^(n-1)-2)/3+2; n为奇数,f[n]=(2^(n-1)-1)/3+2; 现在要做的就是解决取余问题,除的时候取膜 这个地方百度了一下 这里用到了逆元 若,b*b1 % c == 1 则,b1称为b模c的乘法逆元。 (a/b)%c==(a*b1)%c */ #include<bits/stdc++.h> #define ll long long #define mod 10007 using namespace std; /************快速幂模板****************/ ll power(ll n,ll x){ if(x==0) return 1; ll t=power(n,x/2); t=t*t%mod; if(x%2==1)t=t*n%mod; return t; } /************快速幂模板****************/ int t; ll n; ll res=0; int main(){ // freopen("in.txt","r",stdin); scanf("%d",&t); for(int ca=1;ca<=t;ca++){ scanf("%lld",&n); if(n<=2){ printf("Case #%d: 2 ",ca); continue; } if(n&1){//如果n是奇数 res=( ( (power(2,n-1)-1 )*power(3,mod-2))%mod+2 )%mod; }else{//如果n是偶数 res=( ( (power(2,n-1)-2 )*power(3,mod-2))%mod+2 )%mod; } printf("Case #%d: %lld ",ca,res); } return 0; }