zoukankan      html  css  js  c++  java
  • Perfect Squares

    Perfect Squares

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 82    Accepted Submission(s): 59
     
    Problem Description
    A number x is called a perfect square if there exists an integer b satisfying x=b^2. There are many beautiful theorems about perfect squares in mathematics. Among which, Pythagoras Theorem is the most famous. It says that if the length of three sides of a right triangle is a, b and c respectively(a < b <c), then a^2 + b^2=c^2. In this problem, we also propose an interesting question about perfect squares. For a given n, we want you to calculate the number of different perfect squares mod 2^n. We call such number f(n) for brevity. For example, when n=2, the sequence of {i^2 mod 2^n} is 0, 1, 0, 1, 0……, so f(2)=2. Since f(n) may be quite large, you only need to output f(n) mod 10007.
     
    Input
    The first line contains a number T<=200, which indicates the number of test case. Then it follows T lines, each line is a positive number n(0<n<2*10^9).
     
    Output
    For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1) and y is f(x).
     
    Sample Input
    2
    1
    2
     
    Sample Output
    Case #1: 2
    Case #2: 2
     
     
    Source
    2010 ACM-ICPC Multi-University Training Contest(9)——Host by HNU
     
    Recommend
    zhengfeng
    /*
    题意:如果给定n,存在一个是b,使得b^2=n,那么就称n为完美平方数,现在让你求,小于等于n^2的所有完美平方数mod
        2^n的和
    
    初步思路:看输出,这种题一般都是打表推公式的
        打表结果:
            2
            2
            3
            4
            7
            12
            23
            44
            87
            172
            343
            684
            1367
            2732
            5463
            10924
            21847
            43692
            87383
            174764
        奇数项是:F[n]=F[n-1]*2-1;
        偶数项是:F[n]=F[n-1]*2-2;
    #错误:这种递推项是不行的,矩阵快速幂没法实现奇偶的转变
    
    #补充:n为偶数,f[n]=(2^(n-1)-2)/3+2; 
           n为奇数,f[n]=(2^(n-1)-1)/3+2;
        现在要做的就是解决取余问题,除的时候取膜 这个地方百度了一下
        这里用到了逆元 若,b*b1 % c == 1
                       则,b1称为b模c的乘法逆元。
                       (a/b)%c==(a*b1)%c                        
    */
    #include<bits/stdc++.h>
    #define ll long long
    #define mod 10007
    using namespace std;
    /************快速幂模板****************/
    ll power(ll n,ll x){
        if(x==0) return 1;
        ll t=power(n,x/2);
        t=t*t%mod;
        if(x%2==1)t=t*n%mod;
        return t;
    }
    /************快速幂模板****************/
    int t;
    ll n;
    ll res=0;
    int main(){
        // freopen("in.txt","r",stdin);
        scanf("%d",&t);
        for(int ca=1;ca<=t;ca++){
            scanf("%lld",&n);
            if(n<=2){
                printf("Case #%d: 2
    ",ca);
                continue;
            }
            if(n&1){//如果n是奇数
                res=( ( (power(2,n-1)-1 )*power(3,mod-2))%mod+2 )%mod;
            }else{//如果n是偶数
                res=( ( (power(2,n-1)-2 )*power(3,mod-2))%mod+2 )%mod;
            }
            printf("Case #%d: %lld
    ",ca,res);
        }
        return 0;
    }
  • 相关阅读:
    JavaScript常见注意点(一)
    jspServlet2.5和Servlet3的区别
    jspMVC案例
    jQuery入口函数的写法
    Servlet 简介
    jspMVC设计模式和Servlet2.5入门案例
    display 属性
    JSON简单使用
    Tomcat修改端口号
    php开发环境简单配置
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/6396062.html
Copyright © 2011-2022 走看看