zoukankan      html  css  js  c++  java
  • [BZOJ3309]DZY Loves Math

    [BZOJ3309]DZY Loves Math

    试题描述

    对于正整数 (n),定义 (f(n))(n) 所含质因子的最大幂指数。例如 (f(1960)=f(2^3 imes 5^1 imes 7^2)=3, f(10007)=1, f(1)=0)

    给定正整数 (a,b),求 (sum_{i=1}^n sum_{j=1}^m f(gcd(i, j)))

    输入

    第一行一个数 (T),表示询问数。

    接下来 (T) 行,每行两个数 (a,b),表示一个询问。

    输出

    对于每一个询问,输出一行一个非负整数作为回答。

    输入示例

    4
    7558588 9653114
    6514903 4451211
    7425644 1189442
    6335198 4957
    

    输出示例

    35793453939901
    14225956593420
    4332838845846
    15400094813
    

    数据规模及约定

    (T le 10000)

    (1 le a,b le 10^7)

    题解

    按照套路来,枚举最大公约数(以下有些过程的求和符号的上界应该是 (lfloor frac{min {n, m}}{x} floor),不失正确性,以下都写成 (lfloor frac{n}{x} floor)

    [sum_{i=1}^n sum_{j=1}^m f(gcd(i, j)) \ = sum_{g=1}^n { f(g) sum_{i=1}^n sum_{j=1}^m [gcd(i, j) = g] } \ = sum_{g=1}^n { f(g) sum_{i=1}^{lfloor frac{n}{g} floor} sum_{j=1}^{lfloor frac{m}{g} floor} sum_{d|i, d|j} mu(d) } \ = sum_{g=1}^n { f(g) sum_{d=1}^{lfloor frac{n}{g} floor} mu(d) lfloor frac{n}{gd} floor lfloor frac{m}{gd} floor } ]

    继续按套路来,令 (T = gd)

    [= sum_{T=1}^n { lfloor frac{n}{T} floor lfloor frac{m}{T} floor sum_{d|T} mu(d) f left( frac{T}{d} ight) } ]

    (g(T) = sum_{d|T} mu(d) f left( frac{T}{d} ight)),那么现在的问题就是快速求出 (g(T)) 的前缀和。

    [sum_{T=1}^n g(T) \ = sum_{T=1}^n sum_{d|T} mu(d) f left( frac{T}{d} ight) \ = sum_{d=1}^n mu(d) sum_{T=1}^{lfloor frac{n}{d} floor} ]

    (f(T), mu(d)) 的前缀和可以线性筛得到,那么我们只需要预处理 (g(T)) 的前 (n^{frac{2}{3}}) 项就可以杜教筛了。这个做法总时间复杂度 (O(T n^{frac{2}{3}})),在某些 OJ 上能过……

    然而 BZOJ 上是不行的,所以需要想办法线性筛出 (g(T))

    接下来是不知道怎么想出来的部分。

    (T = prod_{i=1}^k p_i^{a_i}),由于 (mu(d)) 不为 (0)(d) 的每个质因子都只有 (1) 次幂,所以有如下结论:

    • (exists i e j, a_i e a_j),那么 (g(T) = 0),这个可以用 ((1-1)^k) 的二项式展开证明:把贡献分为 (d) 是否含有所有的指数最大的质因子,两类贡献都是形如 (k') 个数中取偶数个数的方案减去 (k') 个数中取奇数个数的方案,它们都是 (0)
    • 否则 (g(T) = (-1)^{k+1}),如果有偶数个不同的质因子,会在“全选”的时候少加 (1),因为 (f) 值变小了 (1)(注意这里是所有 (a_i) 都相等的情况),同理奇数个不同质因子会在“全选”时少减 (1)

    那么就可以线性筛出 (g(T)) 了,复杂度降为 (O(T sqrt n))

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    #define rep(i, s, t) for(int i = (s), mi = (t); i <= mi; i++)
    #define dwn(i, s, t) for(int i = (s), mi = (t); i >= mi; i--)
    
    const int BufferSize = 1 << 16;
    char buffer[BufferSize], *Head, *Tail;
    inline char Getchar() {
    	if(Head == Tail) {
    		int l = fread(buffer, 1, BufferSize, stdin);
    		Tail = (Head = buffer) + l;
    	}
    	return *Head++;
    }
    int read() {
    	int x = 0, f = 1; char c = Getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
    	return x * f;
    }
    
    #define maxn 10000010
    #define LL long long
    
    bool vis[maxn];
    int prime[maxn], cp, mu[maxn], f[maxn], g[maxn], smu[maxn], nos[maxn];
    LL sf[maxn], sg[maxn];
    void init() {
    	int n = maxn - 1;
    	mu[1] = smu[1] = 1; f[1] = sf[1] = g[1] = sg[1] = 0;
    	rep(i, 2, n) {
    		if(!vis[i]) prime[++cp] = i, mu[i] = -1, f[i] = 1, nos[i] = 1, g[i] = 1;
    		for(int j = 1; j <= cp && i * prime[j] <= n; j++) {
    			vis[i*prime[j]] = 1;
    			if(i % prime[j] == 0) {
    				mu[i*prime[j]] = 0;
    				f[i*prime[j]] = max(f[nos[i]], f[i/nos[i]] + 1);
    				if(nos[i] > 1) g[i*prime[j]] = f[nos[i]] == f[i/nos[i]] + 1 ? -g[nos[i]] : 0;
    				else g[i*prime[j]] = 1;
    				nos[i*prime[j]] = nos[i];
    				break;
    			}
    			mu[i*prime[j]] = -mu[i];
    			f[i*prime[j]] = max(f[i], 1);
    			g[i*prime[j]] = f[i] == 1 ? -g[i] : 0;
    			nos[i*prime[j]] = i;
    		}
    		smu[i] = smu[i-1] + mu[i];
    		sf[i] = sf[i-1] + f[i];
    		sg[i] = sg[i-1] + g[i];
    	}
    	return ;
    }
    
    int num[50], cntn;
    void putLL(LL x) {
    	if(!x) return (void)puts("0");
    	cntn = 0;
    	while(x) num[cntn++] = x % 10, x /= 10;
    	dwn(i, cntn - 1, 0) putchar(num[i] + '0'); putchar('
    ');
    	return ;
    }
    
    void work() {
    	int n = read(), m = read();
    	LL ans = 0;
    	for(int T = 1; T <= min(n, m); ) {
    		int r = min(min(n / (n / T), m / (m / T)), min(n, m));
    		ans += (LL)(n / T) * (m / T) * (sg[r] - sg[T-1]);
    		T = r + 1;
    	}
    	putLL(ans);
    	return ;
    }
    
    int main() {
    	init();
    	
    	int T = read();
    	
    	while(T--) work();
    	
    	return 0;
    }
    

    再贴一下杜教筛的暴力

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    #define rep(i, s, t) for(int i = (s), mi = (t); i <= mi; i++)
    #define dwn(i, s, t) for(int i = (s), mi = (t); i >= mi; i--)
    
    const int BufferSize = 1 << 16;
    char buffer[BufferSize], *Head, *Tail;
    inline char Getchar() {
    	if(Head == Tail) {
    		int l = fread(buffer, 1, BufferSize, stdin);
    		Tail = (Head = buffer) + l;
    	}
    	return *Head++;
    }
    int read() {
    	int x = 0, f = 1; char c = Getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
    	return x * f;
    }
    
    #define maxn 10000010
    #define maxm 4000010
    #define LL long long
    
    bool vis[maxn];
    int prime[maxn], cp, mu[maxn], f[maxn], smu[maxn], nos[maxn];
    LL sf[maxn], g[maxm], sg[maxm];
    void init() {
    	int n = maxn - 1;
    	mu[1] = smu[1] = 1; f[1] = sf[1] = 0;
    	rep(i, 2, n) {
    		if(!vis[i]) prime[++cp] = i, mu[i] = -1, f[i] = 1, nos[i] = 1;
    		for(int j = 1; j <= cp && i * prime[j] <= n; j++) {
    			vis[i*prime[j]] = 1;
    			if(i % prime[j] == 0) {
    				mu[i*prime[j]] = 0;
    				f[i*prime[j]] = max(f[nos[i]], f[i/nos[i]] + 1);
    				nos[i*prime[j]] = nos[i];
    				break;
    			}
    			mu[i*prime[j]] = -mu[i];
    			f[i*prime[j]] = max(f[i], 1);
    			nos[i*prime[j]] = i;
    		}
    		smu[i] = smu[i-1] + mu[i];
    		sf[i] = sf[i-1] + f[i];
    	}
    	n = maxm - 1;
    	rep(i, 1, n) for(int j = 1; i * j <= n; j++) g[i*j] += mu[i] * f[j];
    	rep(i, 1, n) sg[i] = sg[i-1] + g[i];
    	return ;
    }
    
    const int HMOD = 1000037;
    struct Hash {
    	int ToT, head[HMOD], nxt[maxn], key[maxn];
    	LL val[maxn];
    	Hash() { ToT = 0; memset(head, 0, sizeof(head)); }
    	LL Find(int x) {
    		int u = x % HMOD;
    		for(int e = head[u]; e; e = nxt[e]) if(key[e] == x) return val[e];
    		return -1;
    	}
    	void Insert(int x, LL v) {
    		int u = x % HMOD;
    		key[++ToT] = x; val[ToT] = v; nxt[ToT] = head[u]; head[u] = ToT;
    		return ;
    	}
    } hG;
    
    LL G(int n) {
    	if(n < maxm) return sg[n];
    	LL getg = hG.Find(n);
    	if(getg >= 0) return getg;
    	LL ans = 0;
    	for(int d = 1; d <= n; ) {
    		int r = min(n / (n / d), n);
    		ans += sf[n/d] * (smu[r] - smu[d-1]);
    		d = r + 1;
    	}
    	hG.Insert(n, ans);
    	return ans;
    }
    
    int num[50], cntn;
    void putLL(LL x) {
    	if(!x) return (void)puts("0");
    	cntn = 0;
    	while(x) num[cntn++] = x % 10, x /= 10;
    	dwn(i, cntn - 1, 0) putchar(num[i] + '0'); putchar('
    ');
    	return ;
    }
    
    void work() {
    	int n = read(), m = read();
    	LL ans = 0;
    	for(int T = 1; T <= min(n, m); ) {
    		int r = min(min(n / (n / T), m / (m / T)), min(n, m));
    		ans += (LL)(n / T) * (m / T) * (G(r) - G(T - 1));
    		T = r + 1;
    	}
    	putLL(ans);
    	return ;
    }
    
    int main() {
    	init();
    	
    	int T = read();
    	
    	while(T--) work();
    	
    	return 0;
    }
    

    可以看出卡常的痕迹。

  • 相关阅读:
    002-mybatis主配置文件
    001-mybatis框架
    mybatis学习
    tcp连接与释放
    浏览器输入url的全过程
    设备
    读写分离(三)
    读写分离(二)
    读写分离(一)
    主从复制(三)
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/8463644.html
Copyright © 2011-2022 走看看