zoukankan      html  css  js  c++  java
  • NYOJ 110 剑客决斗

    110剑客决斗

    在路易十三和红衣主教黎塞留当权的时代,发生了一场决斗。n个人站成一个圈,依次抽签。抽中的人和他右边的人决斗,负者出圈。这场决斗的最终结果关键取决于决斗的顺序。现书籍任意两决斗中谁能胜出的信息,但“A赢了B”这种关系没有传递性。例如,A比B强,B比C强,C比A强。如果A和B先决斗,C最终会赢,但如果B和C决斗在先,则最后A会赢。显然,他们三人中的第一场决斗直接影响最终结果。

    假设现在n个人围成一个圈,按顺序编上编号1~n。一共进行n-1场决斗。第一场,其中一人(设i号)和他右边的人(即i+1号,若i=n,其右边人则为1号)。负者被淘汰出圈外,由他旁边的人补上他的位置。已知n个人之间的强弱关系(即任意两个人之间输赢关系)。如果存在一种抽签方式使第k个人可能胜出,则我们说第k人有可能胜出,我们的任务是根据n个人的强弱关系,判断可能胜出的人数。

    输入

    第一行是一个整数N(1<=N<=20)表示测试数据的组数。
    第二行是一个整数n表示决斗的总人数。(2<=n<=500)
    随后的n行是一个n行n列的矩阵,矩阵中的第i行第j列如果为1表示第i个人与第j个人决斗时第i个人会胜出,为0则表示第i个人与第j个人决斗时第i个人会失败。

    输出

    对于每组测试数据,输出可能胜出的人数,每组输出占一行

    样例输入

    1
    3
    0 1 0
    0 0 1
    1 0 0

    样例输出

    3

    /*利用中间节点 判断是否可连接i 能连接方案数++*/
    #include<cstdio>  
    #include<cstring>  
    using namespace std;  
    int n,m; 
    int const M=502;
    bool a[M][M];  
    bool f[M][M];  
    int main()
    {   
        scanf("%d",&n);  
        while (n--)
        {  
            scanf("%d",&m);  
            memset(a,0,sizeof(a));  
            for (int i=0;i!=m;i++)  
                for (int j=0;j!=m;j++)  
                    scanf("%d",&f[i][j]);  
            int end;  
            for (int i=0;i<m;i++)  
                a[i][(i+1)%m]=true;  
            for (int i=2;i<=m;i++)
            {
                for (int j=0;j!=m;j++)
                {
                    end=(i+j)%m;  
                    for (int k=(j+1)%m;k!=end;k++,k%=m) 
                        a[j][end]=a[j][end] || a[j][k] && a[k][end] && (f[j][k] || f[end][k]);  
                }  
            }  
            int ans=0;  
            for (int i=0;i<m;i++)  
                if (a[i][i]) 
                    ans++;  
            printf("%d
    ",ans);  
        }
        return 0;  
    }
  • 相关阅读:
    call()和apply( )
    String.prototype.replace( )
    Global对象和浏览器的window对象
    ros qt 項目增加新的线程
    ubuntu18.04 在QT中添加ros环境搭建 亲测可用
    ubuntu18.04系统下安装Nvidia驱动 + cuda10.0 + cudnn7
    【ROS学习】发布自定义数据结构的话题
    Autoware快速使用资料
    TX2-ubuntu无外接显示器远程桌面时分辨率过低
    Jetson TX2 安装 远程桌面软件 NoMachine
  • 原文地址:https://www.cnblogs.com/xiaoqi7/p/5876653.html
Copyright © 2011-2022 走看看