zoukankan      html  css  js  c++  java
  • 第四周学习笔记

    学习笔记

    1、三相异步电动机的旋转磁场

    旋转磁场是由定子产生的,在定子上有三相绕组,分别接上频率相同、相位相差120°的交流电,从而在电流的作用下产生磁场。由于是交流电,电流会改变,从而导致磁场也发生变化。而旋转磁场的转速与频率和磁极对数有关。

    2、三相异步电动机的工作原理

    归根结底就是转子与定子产生的磁场相对运动,从而发生了切割磁感线的运动,从而产生电动势,出现电流。其中引入转差率来描述运行情况。

    3、定子绕组的连接方式

    主要为星形连接和三角形连接。要弄清楚线电压、线电流、相电压、相电流的关系。

    4、电动机的模型

    关于电动机的模型,主要根据老师给的modelica软件里的模型理解,对每个方程都理解了什么意思,虽然有些具体的值不会计算,但从宏观上有了理解。

    5、三相异步电动机的机械特性

    主要理解图像上的几个特殊点:空载工作点、额定工作点、启动工作点、临界工作点。

    并同时需要理解人为机械特性:(1)降低电动机电压;(2)在定子电路串联电阻和电抗;(3)改变定子电源频率;(4)转子电路串接电阻

    6、电动机的启动方法

    (1)直接启动;(2)电阻或电抗器降压启动;(3)星三角降压启动;(4)自耦变压器降压启动;(5)软启动

    7、关于三相异步电动机的调速方法和制动方法我还不是十分理解,得多找点书学习一下。

    仿真作业

    首先先选择好控制的方法。

    对于启动方法,我选择的是自耦变压器降压启动。

    对于调速方法,我选择的是变频调速。

    对于制动方法,我选择的是反接制动。

    对于具体的方法,主要是一个时间段一个时间段逐步分析,凑出相关的系数,比较繁琐。

    model SACIM "A Simple AC Induction Motor Model"

    type Voltage=Real(unit="V");

    type Current=Real(unit="A");

    type Resistance=Real(unit="Ohm");

    type Inductance=Real(unit="H");

    type Speed=Real(unit="r/min");

    type Torque=Real(unit="N.m");

    type Inertia=Real(unit="kg.m^2");

    type Frequency=Real(unit="Hz");

    type Flux=Real(unit="Wb");

    type Angle=Real(unit="rad");

    type AngularVelocity=Real(unit="rad/s");

    constant Real Pi = 3.1415926;

     

     

    Current i_A"A Phase Current of Stator";

    Current i_B"B Phase Current of Stator";

    Current i_C"C Phase Current of Stator";

    Voltage u_A"A Phase Voltage of Stator";

    Voltage u_B"B Phase Voltage of Stator";

    Voltage u_C"C Phase Voltage of Stator";

    Current i_a"A Phase Current of Rotor";

    Current i_b"B Phase Current of Rotor";

    Current i_c"C Phase Current of Rotor";

    Frequency f_s"Frequency of Stator";

    Torque Tm"Torque of the Motor";

    Speed n"Speed of the Motor";

     

     

    Flux Psi_A"A Phase Flux-Linkage of Stator";

    Flux Psi_B"B Phase Flux-Linkage of Stator";

    Flux Psi_C"C Phase Flux-Linkage of Stator";

    Flux Psi_a"a Phase Flux-Linkage of Rotor";

    Flux Psi_b"b Phase Flux-Linkage of Rotor";

    Flux Psi_c"c Phase Flux-Linkage of Rotor";

     

     

    Angle phi"Electrical Angle of Rotor";

    Angle phi_m"Mechnical Angle of Rotor";

    AngularVelocity w"Angular Velocity of Rotor";

     

     

    Torque Tl"Load Torque";

    Resistance Rs"Stator Resistance";

    parameter Resistance Rr=0.408"Rotor Resistance";

    parameter Inductance Ls = 0.00252"Stator Leakage Inductance";

    parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";

    parameter Inductance Lm = 0.00847"Mutual Inductance";

    parameter Frequency f_N = 50"Rated Frequency of Stator";

    parameter Voltage u_N = 220"Rated Phase Voltage of Stator";

    parameter Real p =2"number of pole pairs";

    parameter Inertia Jm = 0.1"Motor Inertia";

    parameter Inertia Jl = 1"Load Inertia";

    parameter Real K=0.8"starting rate";

    parameter Real a=0.54"frequency rate";

    parameter Real b=0.07"stable frequency rate";

    parameter Real c=0.39"another frequency rate";

    parameter Real P=0.7"stoping rate";

    initial equation

     

     

    Psi_A = 0;

    Psi_B = 0;

    Psi_C = 0;

    Psi_a = 0;

    Psi_b = 0;

    Psi_c = 0;

    phi = 0;

    w = 0;

     

     

    equation

    u_A = Rs * i_A + 1000 * der(Psi_A);

    u_B = Rs * i_B + 1000 * der(Psi_B);

    u_C = Rs * i_C + 1000 * der(Psi_C);

     

     

    0 = Rr * i_a + 1000 * der(Psi_a);

    0 = Rr * i_b + 1000 * der(Psi_b);

    0 = Rr * i_c + 1000 * der(Psi_c);

     

     

    Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;

    Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;

    Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

     

     

    Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;

    Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;

    Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

    Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

     

     

    w = 1000 * der(phi_m);

    phi_m = phi/p;

    n= w*60/(2*Pi);

     

     

    Tm-Tl = (Jm+Jl) * 1000 * der(w);

    Tl = 15;

    if time <= 100 then

    u_A = 0;

    u_B = 0;

    u_C = 0;

    f_s = 0;Rs = 0.531;

    elseif time<=200 then

    f_s = f_N*a; Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*a;

    elseif time<=1900 then

    f_s = f_N*a;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    elseif time<=1970 then

    f_s = f_N*a;Rs = 2;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    elseif time<=2860 then

    f_s = f_N*a;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    elseif time<=3460 then

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;

    f_s = f_N*b;Rs = 0.531;

    elseif time<=3540 then

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*c;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*c;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*c;

    f_s = f_N*K*c;Rs = 0.531;

    elseif time<=4900 then

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*c;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*c;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*c;

    f_s = f_N*c;Rs = 0.531;

    elseif time<=5000 then

    f_s = f_N*P*a;Rs = 2;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a*P;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a*P;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a*P;

    elseif time<=5950 then

    f_s = f_N*a;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    else

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;

    f_s = f_N*b;Rs = 0.531;

    end if;

    end SACIM;

  • 相关阅读:
    线性代数07.Ax=0:主变量,特解
    线性代数06.列空间和零空间
    线性代数05.转置、置换、向量空间
    线性代数04.A的LU分解
    线性代数03.矩阵的乘法和逆
    .线性代数02.矩阵消元
    KEIL中三种编译模式以及对变量空间的影响
    Python之常用模块(三)random模块和序列化
    Python之常用模块(二)time模块与datetime模块
    Python之常用模块(一)自定义模块
  • 原文地址:https://www.cnblogs.com/xiaoxiaoxiaohan/p/5299875.html
Copyright © 2011-2022 走看看