zoukankan      html  css  js  c++  java
  • 【猫狗数据集】划分验证集并边训练边验证

    数据集下载地址:

    链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw
    提取码:2xq4

    创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html

    读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html

    进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html

    保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html

    加载保存的模型并测试:https://www.cnblogs.com/xiximayou/p/12459499.html

    epoch、batchsize、step之间的关系:https://www.cnblogs.com/xiximayou/p/12405485.html

    一般来说,数据集都会被划分为三个部分:训练集、验证集和测试集。其中验证集主要是在训练的过程中观察整个网络的训练情况,避免过拟合等等。

    之前我们有了训练集:20250张,测试集:4750张。本节我们要从训练集中划分出一部分数据充当验证集。

    之前是在windows下进行划分的,接下来我们要在谷歌colab中进行操作。在utils新建一个文件split.py

    import random
    import os
    import shutil
    import glob
    path='/content/drive/My Drive/colab notebooks/data/dogcat'
    train_path=path+'/train'
    val_path=path+'/val'
    test_path=path+'/test'
    
    
    def split_train_test(fileDir,tarDir):
      if not os.path.exists(tarDir):
          os.makedirs(tarDir)
      pathDir = os.listdir(fileDir)    #取图片的原始路径
      filenumber=len(pathDir)
      rate=0.1    #自定义抽取图片的比例,比方说100张抽10张,那就是0.1
      picknumber=int(filenumber*rate) #按照rate比例从文件夹中取一定数量图片
      sample = random.sample(pathDir, picknumber)  #随机选取picknumber数量的样本图片
      print("=========开始移动图片============")
      for name in sample:
        shutil.move(fileDir+name, tarDir+name)
      print("=========移动图片完成============")
    split_train_test(train_path+'/dog/',val_path+'/dog/')  
    split_train_test(train_path+'/cat/',val_path+'/cat/')  
    
    print("验证集狗共:{}张图片".format(len(glob.glob(val_path+"/dog/*.jpg"))))
    print("验证集猫共:{}张图片".format(len(glob.glob(val_path+"/cat/*.jpg"))))
    print("训练集狗共:{}张图片".format(len(glob.glob(train_path+"/dog/*.jpg"))))
    print("训练集猫共:{}张图片".format(len(glob.glob(train_path+"/cat/*.jpg"))))
    print("测试集狗共:{}张图片".format(len(glob.glob(test_path+"/dog/*.jpg"))))
    print("测试集猫共:{}张图片".format(len(glob.glob(test_path+"/cat/*.jpg"))))

    运行结果:

    测试集是正确的,训练集和验证集和我们预想的咋不一样?可能谷歌colab不太稳定,造成数据的丢失。就这样吧,目前我们有这么多数据总不会错了,这回数据量总不会再变了吧。

    为了方便起见,我们再在train目录下新建一个main.py用于统一处理:

     main.py

    import sys
    sys.path.append("/content/drive/My Drive/colab notebooks")
    from utils import rdata
    from model import resnet
    import torch.nn as nn
    import torch
    import numpy as np
    import torchvision
    import train
    
    np.random.seed(0)
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = True
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    batch_size=128
    train_loader,val_loader,test_loader=rdata.load_dataset(batch_size)
    
    model =torchvision.models.resnet18(pretrained=False)
    model.fc = nn.Linear(model.fc.in_features,2,bias=False)
    model.cuda()
    
    
    #定义训练的epochs
    num_epochs=2
    #定义学习率
    learning_rate=0.01
    #定义损失函数
    criterion=nn.CrossEntropyLoss()
    #定义优化方法,简单起见,就是用带动量的随机梯度下降
    optimizer = torch.optim.SGD(params=model.parameters(), lr=0.1, momentum=0.9,
                              weight_decay=1*1e-4)
    print("训练集有:",len(train_loader.dataset))
    print("验证集有:",len(val_loader.dataset))
    def main():
      trainer=train.Trainer(criterion,optimizer,model)
      trainer.loop(num_epochs,train_loader,val_loader)
      
    main()

    然后是修改了train.py中的代码

    import torch
    class Trainer:
      def __init__(self,criterion,optimizer,model):
        self.criterion=criterion
        self.optimizer=optimizer
        self.model=model
    
      def loop(self,num_epochs,train_loader,val_loader):
        for epoch in range(1,num_epochs+1):
          self.train(train_loader,epoch,num_epochs)
          self.val(val_loader,epoch,num_epochs)
    
      def train(self,dataloader,epoch,num_epochs):
        self.model.train()
        with torch.enable_grad():
          self._iteration_train(dataloader,epoch,num_epochs)
    
      def val(self,dataloader,epoch,num_epochs):
        self.model.eval()
        with torch.no_grad():
          self._iteration_val(dataloader,epoch,num_epochs)
    
      def _iteration_train(self,dataloader,epoch,num_epochs):
        total_step=len(dataloader)
        tot_loss = 0.0
        correct = 0
        for i ,(images, labels) in enumerate(dataloader):
          images = images.cuda()
          labels = labels.cuda()
    
          # Forward pass
          outputs = self.model(images)
          _, preds = torch.max(outputs.data,1)
          loss = self.criterion(outputs, labels)
    
          # Backward and optimizer
          self.optimizer.zero_grad()
          loss.backward()
          self.optimizer.step()
          tot_loss += loss.data
          if (i+1) % 2 == 0:
              print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
                    .format(epoch, num_epochs, i+1, total_step, loss.item()))
          correct += torch.sum(preds == labels.data).to(torch.float32)
        ### Epoch info ####
        epoch_loss = tot_loss/len(dataloader.dataset)
        print('train loss: {:.4f}'.format(epoch_loss))
        epoch_acc = correct/len(dataloader.dataset)
        print('train acc: {:.4f}'.format(epoch_acc))
        if epoch%2==0:
          state = { 
            'model': self.model.state_dict(), 
            'optimizer':self.optimizer.state_dict(), 
            'epoch': epoch,
            'train_loss':epoch_loss,
            'train_acc':epoch_acc,
          }
          save_path="/content/drive/My Drive/colab notebooks/output/"   
          torch.save(state,save_path+"/"+"epoch"+str(epoch)+"-resnet18-2"+".t7")
      def _iteration_val(self,dataloader,epoch,num_epochs):
        total_step=len(dataloader)
        tot_loss = 0.0
        correct = 0
        for i ,(images, labels) in enumerate(dataloader):
            images = images.cuda()
            labels = labels.cuda()
    
            # Forward pass
            outputs = self.model(images)
            _, preds = torch.max(outputs.data,1)
            loss = self.criterion(outputs, labels)
            tot_loss += loss.data
            correct += torch.sum(preds == labels.data).to(torch.float32)
            if (i+1) % 2 == 0:
                print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
                      .format(1, 1, i+1, total_step, loss.item()))
        ### Epoch info ####
        epoch_loss = tot_loss/len(dataloader.dataset)
        print('val loss: {:.4f}'.format(epoch_loss))
        epoch_acc = correct/len(dataloader.dataset)
        print('val acc: {:.4f}'.format(epoch_acc))

    在训练时是model.train(),同时将代码放在with torch.enable_grad()中。验证时是model.eval(),同时将代码放在with torch.no_grad()中。我们可以通过观察验证集的损失、准确率和训练集的损失、准确率进行相应的调参工作,主要是为了避免过拟合。我们设定每隔2个epoch就保存一次训练的模型。

    读取数据的代码我们也要做出相应的修改了:rdata.py

    from torch.utils.data import DataLoader
    import torchvision
    import torchvision.transforms as transforms
    import torch
    
    def load_dataset(batch_size):
      #预处理
      train_transform = transforms.Compose([transforms.RandomResizedCrop(224),transforms.ToTensor()])
      val_transform = transforms.Compose([transforms.Resize((224,224)),transforms.ToTensor()])
      test_transform = transforms.Compose([transforms.Resize((224,224)),transforms.ToTensor()])
      path = "/content/drive/My Drive/colab notebooks/data/dogcat"
      train_path=path+"/train"
      test_path=path+"/test"
      val_path=path+'/val'
      #使用torchvision.datasets.ImageFolder读取数据集指定train和test文件夹
      train_data = torchvision.datasets.ImageFolder(train_path, transform=train_transform)
      train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=6)
    
      val_data = torchvision.datasets.ImageFolder(val_path, transform=val_transform)
      val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True, num_workers=6)
      
      test_data = torchvision.datasets.ImageFolder(test_path, transform=test_transform)
      test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True, num_workers=6)
      """
      print(train_data.classes)  #根据分的文件夹的名字来确定的类别
      print(train_data.class_to_idx) #按顺序为这些类别定义索引为0,1...
      print(train_data.imgs) #返回从所有文件夹中得到的图片的路径以及其类别
    
      print(test_data.classes)  #根据分的文件夹的名字来确定的类别
      print(test_data.class_to_idx) #按顺序为这些类别定义索引为0,1...
      print(test_data.imgs) #返回从所有文件夹中得到的图片的路径以及其类别
      """
      return train_loader,val_loader,test_loader

    这里我们将batch_size当作参数进行传入,同时修改了num_works=6(难怪之前第一个epoch训练测试那么慢),然后对于验证和测试,数据增强方式与训练的时候就会不一致了,为了保持原图像,因此不能进行切割为224,而是要讲图像调整为224×224.。最后返回三个dataloader就行了,因为可以从dataloader.dataset可以获取到数据的容量大小。

    最终结果:

    为了再避免数据丢失的问题,我们开始的时候就打印出数据集的大小:

    训练集有: 18255
    验证集有: 2027
    Epoch: [1/2], Step: [2/143], Loss: 2.1346
    Epoch: [1/2], Step: [4/143], Loss: 4.8034
    Epoch: [1/2], Step: [6/143], Loss: 8.4806
    Epoch: [1/2], Step: [8/143], Loss: 3.1965
    Epoch: [1/2], Step: [10/143], Loss: 1.9405
    Epoch: [1/2], Step: [12/143], Loss: 1.8245
    Epoch: [1/2], Step: [14/143], Loss: 1.0050
    Epoch: [1/2], Step: [16/143], Loss: 0.7030
    Epoch: [1/2], Step: [18/143], Loss: 0.8176
    Epoch: [1/2], Step: [20/143], Loss: 0.7163
    Epoch: [1/2], Step: [22/143], Loss: 1.1955
    Epoch: [1/2], Step: [24/143], Loss: 0.7395
    Epoch: [1/2], Step: [26/143], Loss: 0.8374
    Epoch: [1/2], Step: [28/143], Loss: 1.0237
    Epoch: [1/2], Step: [30/143], Loss: 0.7225
    Epoch: [1/2], Step: [32/143], Loss: 0.7724
    Epoch: [1/2], Step: [34/143], Loss: 1.0290
    Epoch: [1/2], Step: [36/143], Loss: 0.8630
    Epoch: [1/2], Step: [38/143], Loss: 0.6931
    Epoch: [1/2], Step: [40/143], Loss: 0.8261
    Epoch: [1/2], Step: [42/143], Loss: 0.6834
    Epoch: [1/2], Step: [44/143], Loss: 0.7619
    Epoch: [1/2], Step: [46/143], Loss: 0.6832
    Epoch: [1/2], Step: [48/143], Loss: 0.7108
    Epoch: [1/2], Step: [50/143], Loss: 0.9719
    Epoch: [1/2], Step: [52/143], Loss: 0.8093
    Epoch: [1/2], Step: [54/143], Loss: 0.8441
    Epoch: [1/2], Step: [56/143], Loss: 0.9111
    Epoch: [1/2], Step: [58/143], Loss: 0.6936
    Epoch: [1/2], Step: [60/143], Loss: 0.8592
    Epoch: [1/2], Step: [62/143], Loss: 0.7161
    Epoch: [1/2], Step: [64/143], Loss: 0.6975
    Epoch: [1/2], Step: [66/143], Loss: 0.6932
    Epoch: [1/2], Step: [68/143], Loss: 1.1292
    Epoch: [1/2], Step: [70/143], Loss: 0.8269
    Epoch: [1/2], Step: [72/143], Loss: 0.7343
    Epoch: [1/2], Step: [74/143], Loss: 0.6779
    Epoch: [1/2], Step: [76/143], Loss: 0.8384
    Epoch: [1/2], Step: [78/143], Loss: 0.7054
    Epoch: [1/2], Step: [80/143], Loss: 0.7532
    Epoch: [1/2], Step: [82/143], Loss: 0.7620
    Epoch: [1/2], Step: [84/143], Loss: 0.7220
    Epoch: [1/2], Step: [86/143], Loss: 0.8249
    Epoch: [1/2], Step: [88/143], Loss: 0.7050
    Epoch: [1/2], Step: [90/143], Loss: 0.7757
    Epoch: [1/2], Step: [92/143], Loss: 0.6918
    Epoch: [1/2], Step: [94/143], Loss: 0.6893
    Epoch: [1/2], Step: [96/143], Loss: 0.7105
    Epoch: [1/2], Step: [98/143], Loss: 0.7681
    Epoch: [1/2], Step: [100/143], Loss: 0.7826
    Epoch: [1/2], Step: [102/143], Loss: 0.6986
    Epoch: [1/2], Step: [104/143], Loss: 0.7252
    Epoch: [1/2], Step: [106/143], Loss: 0.6829
    Epoch: [1/2], Step: [108/143], Loss: 0.6872
    Epoch: [1/2], Step: [110/143], Loss: 0.6776
    Epoch: [1/2], Step: [112/143], Loss: 0.7574
    Epoch: [1/2], Step: [114/143], Loss: 0.7412
    Epoch: [1/2], Step: [116/143], Loss: 0.6889
    Epoch: [1/2], Step: [118/143], Loss: 0.7476
    Epoch: [1/2], Step: [120/143], Loss: 0.6999
    Epoch: [1/2], Step: [122/143], Loss: 0.6735
    Epoch: [1/2], Step: [124/143], Loss: 0.6929
    Epoch: [1/2], Step: [126/143], Loss: 0.6859
    Epoch: [1/2], Step: [128/143], Loss: 0.6791
    Epoch: [1/2], Step: [130/143], Loss: 0.6922
    Epoch: [1/2], Step: [132/143], Loss: 0.7641
    Epoch: [1/2], Step: [134/143], Loss: 0.6894
    Epoch: [1/2], Step: [136/143], Loss: 0.7030
    Epoch: [1/2], Step: [138/143], Loss: 0.6968
    Epoch: [1/2], Step: [140/143], Loss: 0.7000
    Epoch: [1/2], Step: [142/143], Loss: 0.7290
    train loss: 0.0087
    train acc: 0.5054
    Epoch: [1/1], Step: [2/16], Loss: 0.6934
    Epoch: [1/1], Step: [4/16], Loss: 0.6854
    Epoch: [1/1], Step: [6/16], Loss: 0.6950
    Epoch: [1/1], Step: [8/16], Loss: 0.6894
    Epoch: [1/1], Step: [10/16], Loss: 0.6976
    Epoch: [1/1], Step: [12/16], Loss: 0.7385
    Epoch: [1/1], Step: [14/16], Loss: 0.7118
    Epoch: [1/1], Step: [16/16], Loss: 0.7297
    val loss: 0.0056
    val acc: 0.5067
    Epoch: [2/2], Step: [2/143], Loss: 0.7109
    Epoch: [2/2], Step: [4/143], Loss: 0.7193
    Epoch: [2/2], Step: [6/143], Loss: 0.6891
    Epoch: [2/2], Step: [8/143], Loss: 0.6872
    Epoch: [2/2], Step: [10/143], Loss: 0.7610
    Epoch: [2/2], Step: [12/143], Loss: 0.7611
    Epoch: [2/2], Step: [14/143], Loss: 0.7238
    Epoch: [2/2], Step: [16/143], Loss: 0.7438
    Epoch: [2/2], Step: [18/143], Loss: 0.7789
    Epoch: [2/2], Step: [20/143], Loss: 0.7210
    Epoch: [2/2], Step: [22/143], Loss: 0.8573
    Epoch: [2/2], Step: [24/143], Loss: 0.7694
    Epoch: [2/2], Step: [26/143], Loss: 0.7205
    Epoch: [2/2], Step: [28/143], Loss: 0.7020
    Epoch: [2/2], Step: [30/143], Loss: 0.7191
    Epoch: [2/2], Step: [32/143], Loss: 0.7582
    Epoch: [2/2], Step: [34/143], Loss: 0.7804
    Epoch: [2/2], Step: [36/143], Loss: 0.6864
    Epoch: [2/2], Step: [38/143], Loss: 0.6800
    Epoch: [2/2], Step: [40/143], Loss: 0.7184
    Epoch: [2/2], Step: [42/143], Loss: 0.7476
    Epoch: [2/2], Step: [44/143], Loss: 0.6939
    Epoch: [2/2], Step: [46/143], Loss: 0.7176
    Epoch: [2/2], Step: [48/143], Loss: 0.6927
    Epoch: [2/2], Step: [50/143], Loss: 0.7282
    Epoch: [2/2], Step: [52/143], Loss: 0.7118
    Epoch: [2/2], Step: [54/143], Loss: 0.6974
    Epoch: [2/2], Step: [56/143], Loss: 0.7058
    Epoch: [2/2], Step: [58/143], Loss: 0.6776
    Epoch: [2/2], Step: [60/143], Loss: 0.7171
    Epoch: [2/2], Step: [62/143], Loss: 0.7013
    Epoch: [2/2], Step: [64/143], Loss: 0.7390
    Epoch: [2/2], Step: [66/143], Loss: 0.7126
    Epoch: [2/2], Step: [68/143], Loss: 0.6957
    Epoch: [2/2], Step: [70/143], Loss: 0.6995
    Epoch: [2/2], Step: [72/143], Loss: 0.7181
    Epoch: [2/2], Step: [74/143], Loss: 0.7340
    Epoch: [2/2], Step: [76/143], Loss: 0.6885
    Epoch: [2/2], Step: [78/143], Loss: 0.7061
    Epoch: [2/2], Step: [80/143], Loss: 0.6859
    Epoch: [2/2], Step: [82/143], Loss: 0.6821
    Epoch: [2/2], Step: [84/143], Loss: 0.6963
    Epoch: [2/2], Step: [86/143], Loss: 0.6836
    Epoch: [2/2], Step: [88/143], Loss: 0.6870
    Epoch: [2/2], Step: [90/143], Loss: 0.6957
    Epoch: [2/2], Step: [92/143], Loss: 0.6804
    Epoch: [2/2], Step: [94/143], Loss: 0.7612
    Epoch: [2/2], Step: [96/143], Loss: 0.7005
    Epoch: [2/2], Step: [98/143], Loss: 0.7481
    Epoch: [2/2], Step: [100/143], Loss: 0.7385
    Epoch: [2/2], Step: [102/143], Loss: 0.6914
    Epoch: [2/2], Step: [104/143], Loss: 0.7161
    Epoch: [2/2], Step: [106/143], Loss: 0.6914
    Epoch: [2/2], Step: [108/143], Loss: 0.6862
    Epoch: [2/2], Step: [110/143], Loss: 0.7161
    Epoch: [2/2], Step: [112/143], Loss: 0.6887
    Epoch: [2/2], Step: [114/143], Loss: 0.6848
    Epoch: [2/2], Step: [116/143], Loss: 0.6850
    Epoch: [2/2], Step: [118/143], Loss: 0.6952
    Epoch: [2/2], Step: [120/143], Loss: 0.6888
    Epoch: [2/2], Step: [122/143], Loss: 0.7002
    Epoch: [2/2], Step: [124/143], Loss: 0.7047
    Epoch: [2/2], Step: [126/143], Loss: 0.7086
    Epoch: [2/2], Step: [128/143], Loss: 0.6939
    Epoch: [2/2], Step: [130/143], Loss: 0.7021
    Epoch: [2/2], Step: [132/143], Loss: 0.6865
    Epoch: [2/2], Step: [134/143], Loss: 0.6872
    Epoch: [2/2], Step: [136/143], Loss: 0.7039
    Epoch: [2/2], Step: [138/143], Loss: 0.6865
    Epoch: [2/2], Step: [140/143], Loss: 0.6881
    Epoch: [2/2], Step: [142/143], Loss: 0.6984
    train loss: 0.0056
    train acc: 0.5085
    Epoch: [1/1], Step: [2/16], Loss: 0.6790
    Epoch: [1/1], Step: [4/16], Loss: 0.6794
    Epoch: [1/1], Step: [6/16], Loss: 0.6861
    Epoch: [1/1], Step: [8/16], Loss: 0.8617
    Epoch: [1/1], Step: [10/16], Loss: 0.7011
    Epoch: [1/1], Step: [12/16], Loss: 0.6915
    Epoch: [1/1], Step: [14/16], Loss: 0.6909
    Epoch: [1/1], Step: [16/16], Loss: 0.8612
    val loss: 0.0059
    val acc: 0.5032

    只训练了2个epoch,现在的目录结构如下:

     

    通过验证集调整好参数之后,主要是学习率和batch_size。 然后就可以利用调整好的参数进行边训练边测试了。下一节主要就是加上学习率衰减策略以及加上边训练边测试代码。在测试的时候会保存准确率最优的那个模型。

  • 相关阅读:
    Perl的比较操作符
    Perl的变量
    应用负载均衡之LVS(五):lvs和nginx的wrr加权调度算法规律分析
    sharding:谁都能读懂的分库、分表、分区
    MySQL中间件之ProxySQL(15):ProxySQL代理MySQL组复制
    MySQL中间件之ProxySQL(12):禁止多路路由
    MySQL中间件之ProxySQL(14):ProxySQL+PXC
    haproxy(8):haproxy代理MySQL要考虑的问题
    PXC快速入门
    vscode指定扩展安装位置
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12464738.html
Copyright © 2011-2022 走看看