zoukankan      html  css  js  c++  java
  • Hadoop 少量map/reduce任务执行慢问题

    最近在做报表统计,跑hadoop任务。

    之前也跑过map/reduce但是数据量不大,遇到某些map/reduce执行时间特别长的问题。

    执行时间长有几种可能性:

    1. 单个map/reduce任务处理的任务大。

        需要注意每个任务的数据处理量大小不至于偏差太大。可以切割部分大文件。

    2. map数量过多, reduce拉取各方数据慢

        这种情况,可以在中间加一轮map过程A。

        即map -> mapA - > reduce,来减少reduce拉取数据的源头的个数

    3. 遇到了执行慢节点

        hadoop 可以执行推测执行。对于某些耗时长的任务,如果集群有多余的slot可以启动额外的任务执行。

        如果对于同一个map(或者reduce),有任何一个相同map执行完成。则其他任务会被kill, 该map(或者reduce)执行完成。

        这种情况完全避免了,慢节点问题。

      推测执行参数: mapred.map.tasks.speculative.execution 和 mapred.reduce.tasks.speculative.execution 默认开启。

       

    map/reduce官方默认参数: https://hadoop.apache.org/docs/r1.0.4/mapred-default.html

  • 相关阅读:
    Go map 切片
    Go map 增删改查和遍历
    Go map 基本使用
    Go 二维数组
    Go 切片
    Go 数组
    Go 错误处理 defer recover panic
    Go time模块
    5分钟入门MP4文件格式
    写盘工具
  • 原文地址:https://www.cnblogs.com/xudong-bupt/p/8092831.html
Copyright © 2011-2022 走看看