zoukankan      html  css  js  c++  java
  • sgu106.The equation 拓展欧几里得 难度:0

    106. The equation

    time limit per test: 0.25 sec. 
    memory limit per test: 4096 KB

     

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

     

    Input

    Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

     

    Output

    Write answer to the output.

     

    Sample Input

    1 1 -3
    0 4
    0 4
    

    Sample Output

    4

    思路:
    1 使用欧几里得构造出一组解使ax+by=gcd(a,b),然后(明显c%gcd!=0无解.)两边同乘以(c/gcd)
    2 设k1=a/gcd,k2=b/gcd,(x,y)为原方程一组解,那么((x-n*k1),(y+n*k2))也是解(n为任意数)
    3 于是不断寻找满足x1<=x<=x2,y1<=y<=y2的解,计数
    4 这道题会爆int
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int inf=0x7ffffff;
    long long tx1,tx2,ty1,ty2,a,b,c,tx,ty,minn,maxn;
    void limit(long long L,long long R,long long d){//注意取区间端点
        if(d<0){L=-L;R=-R;d=-d;swap(R,L);}
        minn=max(minn,(long long)ceil((double)L/d));
        maxn=min(maxn,(long long)floor((double)R/d));
    }
    long long extgcd(long long a,long long b,long long &x,long long &y){
        long long d=a;
        if(b!=0){
            d=extgcd(b,a%b,y,x);
            y-=(a/b)*x;
        }
        else {
            x=1;y=0;
        }
        return d;
    }
    int main(){
        while(scanf("%I64d%I64d%I64d",&a,&b,&c)==3){
            scanf("%I64d%I64d%I64d%I64d",&tx1,&tx2,&ty1,&ty2);
            if(tx1>tx2||ty1>ty2){
                puts("0");continue;
            }
            long long ans=0;
            if(a==0&&b==0){
                if(c==0)ans=(tx2-tx1+1)*(ty2-ty1+1);
            }
            else if(a==0&&b){
                if(c%b==0&&(-c/b)>=ty1&&(-c/b)<=ty2){
                  ans=(tx2-tx1+1);
                }
            }
            else if(b==0&&a){
                if(c%a==0&&(-c/a)>=tx1&&(-c/a)<=tx2){
                ans=(ty2-ty1+1);
                }
            }
            else {
                int d=extgcd(a,b,tx,ty);
                if((-c)%d==0){
                    tx=-tx*c/d;
                    ty=-ty*c/d;
                    minn=-inf;maxn=inf;
                    limit(tx1-tx,tx2-tx,b/d);
                    limit(ty1-ty,ty2-ty,-a/d);
                    if(minn<=maxn)ans=maxn-minn+1;
                }
            }
            printf("%I64d\n",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    bzoj 2142 礼物——扩展lucas模板
    bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和
    bzoj 4403 序列统计——转化成组合数的思路
    bzoj 2982 combination——lucas模板
    bzoj 3505 [Cqoi2014]数三角形——排列组合
    bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
    bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp
    bzoj 2427 [HAOI2010]软件安装
    bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
    bzoj4247挂饰——DP
  • 原文地址:https://www.cnblogs.com/xuesu/p/3999401.html
Copyright © 2011-2022 走看看