zoukankan      html  css  js  c++  java
  • sgu106.The equation 拓展欧几里得 难度:0

    106. The equation

    time limit per test: 0.25 sec. 
    memory limit per test: 4096 KB

     

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

     

    Input

    Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

     

    Output

    Write answer to the output.

     

    Sample Input

    1 1 -3
    0 4
    0 4
    

    Sample Output

    4

    思路:
    1 使用欧几里得构造出一组解使ax+by=gcd(a,b),然后(明显c%gcd!=0无解.)两边同乘以(c/gcd)
    2 设k1=a/gcd,k2=b/gcd,(x,y)为原方程一组解,那么((x-n*k1),(y+n*k2))也是解(n为任意数)
    3 于是不断寻找满足x1<=x<=x2,y1<=y<=y2的解,计数
    4 这道题会爆int
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int inf=0x7ffffff;
    long long tx1,tx2,ty1,ty2,a,b,c,tx,ty,minn,maxn;
    void limit(long long L,long long R,long long d){//注意取区间端点
        if(d<0){L=-L;R=-R;d=-d;swap(R,L);}
        minn=max(minn,(long long)ceil((double)L/d));
        maxn=min(maxn,(long long)floor((double)R/d));
    }
    long long extgcd(long long a,long long b,long long &x,long long &y){
        long long d=a;
        if(b!=0){
            d=extgcd(b,a%b,y,x);
            y-=(a/b)*x;
        }
        else {
            x=1;y=0;
        }
        return d;
    }
    int main(){
        while(scanf("%I64d%I64d%I64d",&a,&b,&c)==3){
            scanf("%I64d%I64d%I64d%I64d",&tx1,&tx2,&ty1,&ty2);
            if(tx1>tx2||ty1>ty2){
                puts("0");continue;
            }
            long long ans=0;
            if(a==0&&b==0){
                if(c==0)ans=(tx2-tx1+1)*(ty2-ty1+1);
            }
            else if(a==0&&b){
                if(c%b==0&&(-c/b)>=ty1&&(-c/b)<=ty2){
                  ans=(tx2-tx1+1);
                }
            }
            else if(b==0&&a){
                if(c%a==0&&(-c/a)>=tx1&&(-c/a)<=tx2){
                ans=(ty2-ty1+1);
                }
            }
            else {
                int d=extgcd(a,b,tx,ty);
                if((-c)%d==0){
                    tx=-tx*c/d;
                    ty=-ty*c/d;
                    minn=-inf;maxn=inf;
                    limit(tx1-tx,tx2-tx,b/d);
                    limit(ty1-ty,ty2-ty,-a/d);
                    if(minn<=maxn)ans=maxn-minn+1;
                }
            }
            printf("%I64d\n",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    Asp.net Report动态生成
    Select2控件不能自适应的解决办法
    Bootstrap table 行编辑导航
    android – 无法解析AppCompatActivity
    Aspnet mvc移除WebFormViewEngine
    Android串口开发
    阿里云OCR图片转换成文字识别调用
    EF6实现软删除
    Audio播放
    asp.net webapi 的Request如何获取参数
  • 原文地址:https://www.cnblogs.com/xuesu/p/3999401.html
Copyright © 2011-2022 走看看