zoukankan      html  css  js  c++  java
  • poj-2955 (区间dp)

    Brackets
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5150   Accepted: 2761

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6
    AC代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    char str[150];
    int dp[120][120];
    int main()
    {
        while(1)
        {
            scanf("%s",str);
            if(str[0]=='e')break;
        int len=strlen(str);
        memset(dp,0,sizeof(dp));
        for(int j=0;j<len;j++)
        {
            for(int i=j-1;i>=0;i--)
            {
                dp[i][j]=dp[i+1][j];
                for(int k=i+1;k<=j;k++)
                {
                    if((str[i]=='('&&str[k]==')')||(str[i]=='['&&str[k]==']'))
                       {
                           dp[i][j]=max(dp[i][j],dp[i+1][k-1]+dp[k+1][j]+2);
                       }
                }
            }
        }
        cout<<dp[0][len-1]<<"
    ";
        }
        return 0;
    }
  • 相关阅读:
    *args和**kwargs
    事件驱动模型
    同步异步和阻塞非阻塞
    多进程和多线程
    认识tornado(五)
    认识tornado(四)
    认识tornado(三)
    [GO]使用select实现超时
    [GO]使用select实现斐波那契
    [GO]ticker的使用
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5246880.html
Copyright © 2011-2022 走看看