zoukankan      html  css  js  c++  java
  • Hdu 1163 Eddy's digital Roots

    Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6826    Accepted Submission(s): 3738

    Problem Description

    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

    Input

    The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).

    Output

    Output n^n's digital root on a separate line of the output.

    Sample Input

    2

    4

    0

    Sample Output

    4

    4

    #include<stdio.h>
    int main()
    {
        int a,i,n;
        while(scanf("%d",&n)!=EOF&&n!=0)
        {
            a=n;
            for(i=2;i<=n;i++)//    求次方,防止数过大,每次都求九的余数             a=a*n%9;
            if(a==0)
                printf("9
    ");
            else
            printf("%d
    ",a);
        }
        return 0;
    }
    

      

  • 相关阅读:
    Java学习笔记2.Java标识符和基本数据类型
    Java面试题库(四)
    Eclipse最常用的一些快捷键技巧
    心理学166个现象(很多,别一次看完!)[119]
    Java学习笔记1.Java发展及JDK配置
    SQL操作全集
    J2EE面试题库
    Java面试题库(一)
    Java程序员,面试必读
    Java面试题库(二)
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7057902.html
Copyright © 2011-2022 走看看