zoukankan      html  css  js  c++  java
  • Hdu 1163 Eddy's digital Roots

    Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6826    Accepted Submission(s): 3738

    Problem Description

    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

    Input

    The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).

    Output

    Output n^n's digital root on a separate line of the output.

    Sample Input

    2

    4

    0

    Sample Output

    4

    4

    #include<stdio.h>
    int main()
    {
        int a,i,n;
        while(scanf("%d",&n)!=EOF&&n!=0)
        {
            a=n;
            for(i=2;i<=n;i++)//    求次方,防止数过大,每次都求九的余数             a=a*n%9;
            if(a==0)
                printf("9
    ");
            else
            printf("%d
    ",a);
        }
        return 0;
    }
    

      

  • 相关阅读:
    利用git上传到码云
    js 数组的方法总结
    什么是浏览器的回流和重绘以及如何减少回流和重绘
    数组的方法some和includes
    node.js中使用http-proxy-middleware请求转发给其它服务器
    什么是BFC
    如何用Github上传项目中的代码
    前端渲染与后端渲染的区别有哪些
    移动端路由的切换
    面试题
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7057902.html
Copyright © 2011-2022 走看看