zoukankan      html  css  js  c++  java
  • C# 4种方法计算斐波那契数列 Fibonacci

    F1:  迭代法

    最慢,复杂度最高

    F2:  直接法

    F3:  矩阵法

    参考《算法之道(The Way of Algorithm)》第38页-魔鬼序列:斐波那契序列

    F4:  通项公式法

     由于公式中包含根号5,无法取得精确的结果,数字越大误差越大

      1 using System;
      2 using System.Diagnostics;
      3 
      4 
      5 namespace Fibonacci
      6 {
      7     class Program
      8     {
      9         static void Main(string[] args)
     10         {
     11             ulong result;
     12 
     13             int number = 10;
     14             Console.WriteLine("************* number={0} *************", number);
     15 
     16             Stopwatch watch1 = new Stopwatch();
     17             watch1.Start();
     18             result = F1(number);
     19             watch1.Stop();
     20             Console.WriteLine("F1({0})=" + result + "  耗时:" + watch1.Elapsed, number);
     21 
     22             Stopwatch watch2 = new Stopwatch();
     23             watch2.Start();
     24             result = F2(number);
     25             watch2.Stop();
     26             Console.WriteLine("F2({0})=" + result + "  耗时:" + watch2.Elapsed, number);
     27 
     28             Stopwatch watch3 = new Stopwatch();
     29             watch3.Start();
     30             result = F3(number);
     31             watch3.Stop();
     32             Console.WriteLine("F3({0})=" + result + "  耗时:" + watch3.Elapsed, number);
     33 
     34             Stopwatch watch4 = new Stopwatch();
     35             watch4.Start();
     36             double result4 = F4(number);
     37             watch4.Stop();
     38             Console.WriteLine("F4({0})=" + result4 + "  耗时:" + watch4.Elapsed, number);
     39 
     40             Console.WriteLine();
     41 
     42             Console.WriteLine("结束");
     43             Console.ReadKey();
     44         }
     45 
     46         /// <summary>
     47         /// 迭代法
     48         /// </summary>
     49         /// <param name="number"></param>
     50         /// <returns></returns>
     51         private static ulong F1(int number)
     52         {
     53             if (number == 1 || number == 2)
     54             {
     55                 return 1;
     56             }
     57             else
     58             {
     59                 return F1(number - 1) + F1(number - 2);
     60             }
     61             
     62         }
     63 
     64         /// <summary>
     65         /// 直接法
     66         /// </summary>
     67         /// <param name="number"></param>
     68         /// <returns></returns>
     69         private static ulong F2(int number)
     70         {
     71             ulong a = 1, b = 1;
     72             if (number == 1 || number == 2)
     73             {
     74                 return 1;
     75             }
     76             else
     77             {
     78                 for (int i = 3; i <= number; i++)
     79                 {
     80                     ulong c = a + b;
     81                     b = a;
     82                     a = c;
     83                 }
     84                 return a;
     85             }
     86         }
     87 
     88         /// <summary>
     89         /// 矩阵法
     90         /// </summary>
     91         /// <param name="n"></param>
     92         /// <returns></returns>
     93         static ulong F3(int n)
     94         {
     95             ulong[,] a = new ulong[2, 2] { { 1, 1 }, { 1, 0 } };
     96             ulong[,] b = MatirxPower(a, n);
     97             return b[1, 0];
     98         }
     99 
    100         #region F3
    101         static ulong[,] MatirxPower(ulong[,] a, int n)
    102         {
    103             if (n == 1) { return a; }
    104             else if (n == 2) { return MatirxMultiplication(a, a); }
    105             else if (n % 2 == 0)
    106             {
    107                 ulong[,] temp = MatirxPower(a, n / 2);
    108                 return MatirxMultiplication(temp, temp);
    109             }
    110             else
    111             {
    112                 ulong[,] temp = MatirxPower(a, n / 2);
    113                 return MatirxMultiplication(MatirxMultiplication(temp, temp), a);
    114             }
    115         }
    116 
    117         static ulong[,] MatirxMultiplication(ulong[,] a, ulong[,] b)
    118         {
    119             ulong[,] c = new ulong[2, 2];
    120             for (int i = 0; i < 2; i++)
    121             {
    122                 for (int j = 0; j < 2; j++)
    123                 {
    124                     for (int k = 0; k < 2; k++)
    125                     {
    126                         c[i, j] += a[i, k] * b[k, j];
    127                     }
    128                 }
    129             }
    130             return c;
    131         }
    132         #endregion
    133 
    134         /// <summary>
    135         /// 通项公式法
    136         /// </summary>
    137         /// <param name="n"></param>
    138         /// <returns></returns>
    139         static double F4(int n)
    140         {
    141             double sqrt5 = Math.Sqrt(5);
    142             return (1/sqrt5*(Math.Pow((1+sqrt5)/2,n)-Math.Pow((1-sqrt5)/2,n)));
    143         }
    144     }
    145 }

    n=50时

    n=500

     n=5000

     n=50000

     n=5000000

  • 相关阅读:
    文件内容作为服务器的响应练习
    request的请求体数据获取
    request请求头的数据
    Nodejs中流的操作
    response的数据
    http(二)
    Android SlidingMenu使用详解
    Android跨应用启动Service
    Android使用PopupMenu创建弹出式菜单
    HTML5 内联框架iFrame
  • 原文地址:https://www.cnblogs.com/zhaoliankun/p/9149555.html
Copyright © 2011-2022 走看看