题目链接:http://lightoj.com/volume_showproblem.php?problem=1213
#include <stdio.h> int cases, caseno; int n, K, MOD; int A[1001]; int main() { scanf("%d", &cases); while( cases-- ) { scanf("%d %d %d", &n, &K, &MOD); int i, i1, i2, i3, ... , iK; for( i = 0; i < n; i++ ) scanf("%d", &A[i]); int res = 0; for( i1 = 0; i1 < n; i1++ ) { for( i2 = 0; i2 < n; i2++ ) { for( i3 = 0; i3 < n; i3++ ) { ... for( iK = 0; iK < n; iK++ ) { res = ( res + A[i1] + A[i2] + ... + A[iK] ) % MOD; } ... } } } printf("Case %d: %d ", ++caseno, res); } return 0; }
题意:告诉你这段代码,然后优化,求res; n (1 ≤ n ≤ 1000), K (1 ≤ K < 231), MOD (1 ≤ MOD ≤ 35000)
我们很容易就知道最内成的加法式子执行了n^K次,每次加了K个数,所以一共加了K*n^K个数,一共有n个数,每个数加的次数一定是相同的,所以每个数都加了K*n^(K-1)次,所以结果就是Sum*K*n^(K-1)%mod; 快速幂求一下即可;
#include<stdio.h> #include<string.h> #include<iostream> #include<vector> using namespace std; typedef long long LL; const int oo = 0xfffffff; const int N = 1e3+5; LL K, mod, a[N]; int n; LL Pow(LL a, LL b) { LL ans = 1; while(b) { if(b&1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans; } int main() { int T, t = 1; scanf("%d", &T); while(T--) { scanf("%d %lld %lld", &n, &K, &mod); LL sum = 0; for(int i=1; i<=n; i++) { scanf("%lld", &a[i]); sum = (sum + a[i])%mod; } sum = (sum * K)%mod * Pow((LL)n, K-1)%mod; printf("Case %d: %lld ", t++, sum); } return 0; }