zoukankan      html  css  js  c++  java
  • BZOJ 3944: Sum

    记F[n]为f[i]的前缀和,G[n]为g[i]的前缀和。若g[i]=∑d|n f[i],有F[n]=G[n]-∑F[n/i](i=2...n)

    然后存下n^(2/3)的F[i]开个map然后记忆化搜索一下就好了。

    若f[i]=φ[i],G[n]=n(n+1)/2,若f[i]=μ[i],G[n]=1

    #include<cstring>
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<map>
    #define rep(i,l,r) for (int i=l;i<=r;i++)
    #define down(i,l,r) for (int i=l;i>=r;i--)
    #define clr(x,y) memset(x,y,sizeof(x))
    #define maxn 4000001
    #define mm 1000000007
    using namespace std;
    typedef long long ll;
    ll a[maxn],phi[maxn],mo[maxn],mx;
    int n,pri[maxn/5],b[maxn],tot;
    map<int,ll> mp,mp2;
    ll read(){
        ll x=0,f=1; char ch=getchar();
        while (!isdigit(ch)){if (ch=='-') f=-1; ch=getchar();}
        while (isdigit(ch)){x=x*10+ch-'0'; ch=getchar();}
        return x*f; 
    }
    void init() {
        int n=mx;
        clr(b,0);
        mo[1]=1; phi[1]=1;
        rep(i,2,n) {
            if (!b[i]) pri[++tot]=i,b[i]=1,phi[i]=i-1,mo[i]=-1;
            rep(j,1,tot){
                if (pri[j]*i>mx) break;
                b[i*pri[j]]=1;
                if (i%pri[j]!=0) phi[i*pri[j]]=phi[i]*(pri[j]-1),mo[i*pri[j]]=-mo[i];
                else {
                    phi[i*pri[j]]=phi[i]*pri[j]; mo[i*pri[j]]=0;
                    break;
                }
            }
        }
        rep(i,1,n) phi[i]+=phi[i-1];
        rep(i,1,n) mo[i]+=mo[i-1];
    }
    ll dfs(ll n){
        if (n<=mx) return phi[n];
        if (mp.count(n)) return mp[n];
        ll x;
        x=n*(n+1)/2;
        for (ll i=2,pos;i<=n;i=pos+1){
            pos=n/(n/i);
            x-=dfs(n/i)*(pos-i+1);
        }
        return mp[n]=x;
    }
    ll dfs2(ll n){
        if (n<=mx) return mo[n];
        if (mp2.count(n)) return mp2[n];
        ll x=1;
        for (ll i=2,pos;i<=n;i=pos+1){
            pos=n/(n/i);
            x-=dfs2(n/i)*(pos-i+1);
        }
        return mp2[n]=x;
    }
    int main(){
        n=read();
        mx=4000000;
        init(); 
        rep(i,1,n){
            ll x=read();
            printf("%lld %lld
    ",dfs(x),dfs2(x));
        }   
        return 0;
    }

  • 相关阅读:
    windows下在yii中使用mongodb
    yii框架便利类CVarDumper使用
    64位虚拟机创建注意事项
    C#中的委托和事件
    Attribute
    NuGet安装及使用教程
    WPF+WEB+WinForm->>表现层共用类
    C#报修系统Ⅱ
    C#带小括号的运算
    工厂模式提供数据源
  • 原文地址:https://www.cnblogs.com/ctlchild/p/5096305.html
Copyright © 2011-2022 走看看