zoukankan      html  css  js  c++  java
  • Neural Network and DeepLearning (1.2)使用神经网络识别手写数字

    1.Learning with gradient descent(使用梯度下降法进行学习)

    cost function(代价函数)


    训练神经网络的目的是找到能最小化二次代价函数C(w,b)的权重和偏置。梯度下降:

    when we move the ball a small amount Δv1 in the v1 direction, and a small amount Δv2 in the v2 direction. Calculus tells us that C changes as follows:

    defined the gradient of C to be the vector of partial derivatives:

    the expression for ΔC can be rewritten as:

    choose Δv as:

    then:

    this guarantees that ΔC≤0, C will always decrease, never increase.

    hat is, we'll use Equation (10) to compute a value for Δv, then move the ball's position v by that amount:

    Then we'll use this update rule again, to make another move. If we keep doing this, over and over, we'll keep decreasing C until - we hope - we reach a global minimum.

    stochastic gradient descent(随机梯度下降):

    works by picking out a randomly chosen mini-batch of training inputs, and training with those:

    随机记梯度下降通过随机的选取并训练输入的小批量数据来工作,其中两个求和符号是在当前小批量数据中的所有训练样本Xj,上进行的。

    然后我们再挑选另一随机选定的小批量数据去训练。直到我们用完了所有的训练输入,这被称为完成了一个训练迭代期(epoch)。然后我们就会开始一个新的训练迭代期。

    备:我们不能提前知道训练数据量的情况下,舍弃1/n1/m是有效的。

      小批量数据的大小设置为1时,成为online学习,或递增学习

  • 相关阅读:
    移动端(H5)弹框组件--简单--实用--不依赖jQuery
    jquery attr()和prop()方法的区别
    jQuery选择器
    Tomcat&Web程序结构&Http协议(一)
    Javascript&DOM(三)
    html&CSS代码篇(二)
    html&css入门篇(一)
    『一本通』区间DP
    『P1549』棋盘问题
    『USACO08OCT]』Watering Hole
  • 原文地址:https://www.cnblogs.com/zhoulixue/p/6495234.html
Copyright © 2011-2022 走看看