http://codeforces.com/contest/1029/problem/D
You are given an array aa, consisting of nn positive integers.
Let's call a concatenation of numbers xx and yy the number that is obtained by writing down numbers xx and yy one right after another without changing the order. For example, a concatenation of numbers 1212 and 34563456 is a number 123456123456.
Count the number of ordered pairs of positions (i,j)(i,j) (i≠ji≠j) in array aa such that the concatenation of aiai and ajaj is divisible by kk.
The first line contains two integers nn and kk (1≤n≤2⋅1051≤n≤2⋅105, 2≤k≤1092≤k≤109).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109).
Print a single integer — the number of ordered pairs of positions (i,j)(i,j) (i≠ji≠j) in array aa such that the concatenation of aiai and ajaj is divisible by kk.
6 11
45 1 10 12 11 7
7
4 2
2 78 4 10
12
5 2
3 7 19 3 3
0
代码:
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10; int N, K; int num[maxn]; map<long long, long long> mp[15]; int main() { scanf("%d%d", &N, &K); for(int i = 1; i <= N; i ++) { scanf("%d", &num[i]); long long a = num[i]; for(int j = 1; j <= 10; j ++) { a *= 10; a %= K; mp[j][a] ++; } } long long cnt = 0; for(int i = 1; i <= N; i ++) { int t = num[i] % K; int len = log10(num[i]) + 1; cnt += mp[len][(K - t) % K]; long long x = 1; for(int j = 1; j <= len; j ++) x = (x * 10) % K; if(((num[i] * x) % K + num[i] % K) % K == 0) cnt --; } printf("%I64d ", cnt); return 0; }