zoukankan      html  css  js  c++  java
  • ReentrantReadWriteLock源码分析

    概述

    ReentrantReadWriteLock维护了一对相关的锁,它们分别是共享readLock和独占writeLock。关于共享读锁和排他写锁的概念其实很好理解。所谓共享读锁就是一个线程读的时候,其它线程也可以来读(共享),但是不能来写。排他写锁是指一个线程在写的时候,其它线程不能来写或读(排他)。除了这个特点之外,ReentrantReadWriteLock还有一个特点就是可重入的。它和ReentrantLock一样都是支持Condition的。而且ReentrantReadWerite还支持锁降级,即允许将写锁降级为读锁。

    简单使用

    最最基础的用法如下:

        ReentrantReadWriteLock lock=new ReentrantReadWriteLock();
        
        public void read(){
            lock.readLock().lock();
            //需要加读锁的操作
            lock.readLock().unlock();
        }
        
        public void write(){
            lock.writeLock().lock();
            //需要加写锁的操作
            lock.writeLock().unlock();
        }
    

    ReentrantReadWriteLock无非就是这几种情况,读读共享,写写互斥,读写互斥,写读互斥。

    下面我们就以这个最基础的用法,来分析一下其内部的原理

    源码分析

    继承体系

    l5kuct.md.png

    共享读锁的实现原理分析

    lock方法

    1. 首先进入调用具体的实现
            public void lock() {
                sync.acquireShared(1);
            }
    
    1. 然后调用了这个方法
        public final void acquireShared(int arg) {
            if (tryAcquireShared(arg) < 0)
                doAcquireShared(arg);
        }
    

    其中 int tryAcquireShared(int unused)的具体实现如下:

     protected final int tryAcquireShared(int unused) {
                /*
                 * Walkthrough:
                 * 1. If write lock held by another thread, fail.
                 * 2. Otherwise, this thread is eligible for
                 *    lock wrt state, so ask if it should block
                 *    because of queue policy. If not, try
                 *    to grant by CASing state and updating count.
                 *    Note that step does not check for reentrant
                 *    acquires, which is postponed to full version
                 *    to avoid having to check hold count in
                 *    the more typical non-reentrant case.
                 * 3. If step 2 fails either because thread
                 *    apparently not eligible or CAS fails or count
                 *    saturated, chain to version with full retry loop.
                 */
                Thread current = Thread.currentThread();
                int c = getState();
                //持有写锁的线程可以获取读锁,如果获取锁的线程不是当前线程,则返回-1
                if (exclusiveCount(c) != 0 &&
                    getExclusiveOwnerThread() != current)
                    return -1;
                int r = sharedCount(c);//获取共享读锁的数量
                if (!readerShouldBlock() &&
                    r < MAX_COUNT &&
                    compareAndSetState(c, c + SHARED_UNIT)) {
                    if (r == 0) {
                    //如果首次获取锁,则初始化firstReader和firstReaderHoldCount
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                    //如果当前线程是首次获取读锁的线程
                        firstReaderHoldCount++;
                    } else {
                    //更新HoldCounter
                        HoldCounter rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            cachedHoldCounter = rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                    }
                    return 1;
                }
                return fullTryAcquireShared(current);
            }
    

    整个函数的工作流程如下:

    • 如果写锁已经被持有了,但是持有写锁的不是当前写出,那么就直接返回-1(体现写锁的排他性).
    • 如果在尝试获取锁是不需要阻塞等待(由锁的公平性决定),并且读锁的共享计数小于最大值,那么就直接通过CAS更新读锁数量,获取读锁。
    • 如果第二步执行失败了,那么就会调用fullTryAcquireShared(current)

    fullTryAcquireShared(current)的具体实现如下:

     final int fullTryAcquireShared(Thread current) {
                /*
                 * This code is in part redundant with that in
                 * tryAcquireShared but is simpler overall by not
                 * complicating tryAcquireShared with interactions between
                 * retries and lazily reading hold counts.
                 */
                HoldCounter rh = null;
                for (;;) { //自旋
                    int c = getState();
                    if (exclusiveCount(c) != 0) { //写锁已经被持有了
                        if (getExclusiveOwnerThread() != current) //持有写锁的不是单线程
                            return -1; //其它线程持有读锁后,就不能在获取写锁了
                        // else we hold the exclusive lock; blocking here
                        // would cause deadlock.
                    } else if (readerShouldBlock()) {//由公平性决定需要阻塞
                        // Make sure we're not acquiring read lock reentrantly
                        if (firstReader == current) { 
                            // assert firstReaderHoldCount > 0;
                        } else {
                        //更新锁计数(可重入的体现)
                            if (rh == null) {
                                rh = cachedHoldCounter;
                                if (rh == null || rh.tid != getThreadId(current)) {
                                    rh = readHolds.get();
                                    if (rh.count == 0)
                                    //如果当前线程的持有读锁数为0,那么就没必要使用计数器,直接移除
                                        readHolds.remove();
                                }
                            }
                            if (rh.count == 0)
                                return -1;
                        }
                    }
                    if (sharedCount(c) == MAX_COUNT) //如果读锁的数量超过最大值了
                        throw new Error("Maximum lock count exceeded");
                    if (compareAndSetState(c, c + SHARED_UNIT)) { //CAS更新读锁数量
                        if (sharedCount(c) == 0) {
                        //首次获取读锁
                            firstReader = current;
                            firstReaderHoldCount = 1;
                        } else if (firstReader == current) {
                        //当前线程是首次获取读锁的线程,直接更新持有数
                            firstReaderHoldCount++;
                        } else {
                        //当前线程是后来共享读锁的线程
                            if (rh == null)
                                rh = cachedHoldCounter;
                            if (rh == null || rh.tid != getThreadId(current))
                                rh = readHolds.get();//更新为当前线程的计数器 
                            else if (rh.count == 0)
                                readHolds.set(rh);
                            rh.count++;
                            cachedHoldCounter = rh; // cache for release
                        }
                        return 1;
                    }
                }
            }
    

    可以看出其实int fullTryAcquireShared(Thread current) 也每什么特别,它的代码和int tryAcquireShared(int unused)差不多。只不过是增加了自旋重试,和“持有读锁数的延迟读取”

    1. 我们回到void acquireShared(int arg)方法,如果tryAcquireShared(arg)获取读锁失败后,它调用的 doAcquireShared(arg)又做了什么呢?
      它的具体实现如下:
     private void doAcquireShared(int arg) {
            final Node node = addWaiter(Node.SHARED); //添加一个共享模式的Node到等待队列尾部
            boolean failed = true;
            try {
                boolean interrupted = false; //获取前驱节点
                for (;;) {
                    final Node p = node.predecessor();
                    if (p == head) {
                    //如果前驱节点,尝试获取资源
                        int r = tryAcquireShared(arg);
                        if (r >= 0) {
                        //获取成功,更新等待队列,并唤醒下一个等待的节点
                            setHeadAndPropagate(node, r);
                            p.next = null; // help GC
                            if (interrupted)
                                selfInterrupt();
                            failed = false;
                            return;
                        }
                    }
                    if (shouldParkAfterFailedAcquire(p, node) && //检查获取失败后是否可以阻塞
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }
    

    其实整个获取共享读锁的源码看下来,我们可以发现,AQS框架下,获取锁一般的流程就是首先尝试去直接获取,如果获取不到了,那么尝试自旋获取,如果还是获取不到,那么就去等待队列排队,排队的时候,如果发现自己是第二个那么就再次尝试获取锁,如果还是没获取到,那么就老老实实的在等待队列中park阻塞等待了。

    我们通过源码,也可发现AQS框架下的锁,其实如果线程之间对锁的争用很低的时候,大多数时候直接就能拿到锁,几乎不需要排队,阻塞之类的,性能非常之高。

    unlock方法

    1. 第一步还是调用具体的实现
            public void unlock() {
                sync.releaseShared(1);
            }
    
    1. 具体的实现如下
        public final boolean releaseShared(int arg) {
            if (tryReleaseShared(arg)) {
                doReleaseShared();
                return true;
            }
            return false;
        }
    
    1. 首先来看tryReleaseShared(arg)
      protected final boolean tryReleaseShared(int unused) {
                Thread current = Thread.currentThread();
                if (firstReader == current) { //如过当前线程是第一获取到读锁的线程
                    // assert firstReaderHoldCount > 0;
                    //直接更新线程持有数
                    if (firstReaderHoldCount == 1)
                        firstReader = null;
                    else
                        firstReaderHoldCount--;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        rh = readHolds.get(); //获取当前线程的计数器
                    int count = rh.count;
                    if (count <= 1) {
                        readHolds.remove();
                        if (count <= 0)
                            throw unmatchedUnlockException();
                    }
                    --rh.count;
                }
                for (;;) { //自旋
                    int c = getState();
                    int nextc = c - SHARED_UNIT;
                    if (compareAndSetState(c, nextc)) //更新state
                        // Releasing the read lock has no effect on readers,
                        // but it may allow waiting writers to proceed if
                        // both read and write locks are now free.
                        return nextc == 0;
                }
            }
    

    我们从tryReleaseShared(arg)的实现中可以看出,它的主要是去更新锁计数器和state。如果state为0的话,就返回true,否则就返回false。

    1. 我们回过头看,如果tryReleaseShared(arg)返回true,即锁释放后state为0了,那么它会执行doReleaseShared();方法,它的具体实现如下:
     private void doReleaseShared() {
            /*
             * Ensure that a release propagates, even if there are other
             * in-progress acquires/releases.  This proceeds in the usual
             * way of trying to unparkSuccessor of head if it needs
             * signal. But if it does not, status is set to PROPAGATE to
             * ensure that upon release, propagation continues.
             * Additionally, we must loop in case a new node is added
             * while we are doing this. Also, unlike other uses of
             * unparkSuccessor, we need to know if CAS to reset status
             * fails, if so rechecking.
             */
            for (;;) {
                Node h = head;
                if (h != null && h != tail) {
                    int ws = h.waitStatus;
                    if (ws == Node.SIGNAL) {
                        if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                            continue;            // loop to recheck cases
                        unparkSuccessor(h);
                    }
                    else if (ws == 0 &&
                             !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                        continue;                // loop on failed CAS
                }
                if (h == head)                   // loop if head changed
                    break;
            }
        }
    

    这个方法的作用就是唤醒等待队列中线程,现在资源已经空闲了,等待的线程可以唤醒来获取锁了。

    排他写锁的实现原理分析

    排他写锁的实现原理其实和ReentrantLock一致。我们只看几处和共享读锁不同的地方。

    //公平锁实现
    protected final boolean tryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
                int c = getState();
                if (c == 0) {
                    if (!hasQueuedPredecessors() && //判断当前线程是否还有前节点
                        compareAndSetState(0, acquires)) {//CAS修改state
                        //获取锁成功,设置锁的持有线程为当前线程
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
                else if (current == getExclusiveOwnerThread()) {//该线程之前已经拿到锁
                    int nextc = c + acquires; //重入的体现
                    if (nextc < 0)
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc); //更新State
                    return true;
                }
                return false;
            }
    

    其实非公平锁的实现也差不多,只不过少了!hasQueuedPredecessors() 它不会去判断当前线程是否还有前驱节点,直接就开始获取锁了。

    unlock方法也差不多我就不赘述了。

  • 相关阅读:
    刷题柱 -- 暂封
    模板重搭建計劃
    思路与好题记录与小技巧
    错误记录
    随便记点东西……
    图床
    杂碎的小技巧
    hnsdfz -- 6.21 -- day7
    hsdf -- 6.21 -- day6
    hnsdfz -- 6.20 -- day5
  • 原文地址:https://www.cnblogs.com/zofun/p/12206876.html
Copyright © 2011-2022 走看看