zoukankan      html  css  js  c++  java
  • cf934C. A Twisty Movement(思维题)

    题意

    题目链接

    Sol

    这题最直接的维护区间以0/1结尾的LIS的方法就不说了。

    其实我们可以直接考虑翻转以某个位置为中点的区间的最大值

    不难发现前缀和后缀产生的贡献都是独立的,可以直接算。维护一下前缀/后缀和即可

    #include<bits/stdc++.h> 
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    #define LL long long 
    #define ull unsigned long long 
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    using namespace std;
    const int MAXN = 501, mod = 1e9 + 7, INF = 1e9 + 10;
    const double eps = 1e-9;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    template <typename A> inline void debug(A a){cout << a << '
    ';}
    template <typename A> inline LL sqr(A x){return 1ll * x * x;}
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, a[MAXN], f[MAXN], g[MAXN];
    signed main() {
    	N = read();
    	for(int i = 1; i <= N; i++) a[i] = read(), f[i] = f[i - 1] + (a[i] == 1);
    	for(int i = N; i >= 1; i--) g[i] = g[i + 1] + (a[i] == 2);
    	int ans = 0;
    	for(int i = 1; i <= N; i++) {
    		int s1 = 0, s2 = 0;
    		for(int j = i; j >= 1; j--) chmax(s1, f[j - 1] + g[j] - g[i]);
    		for(int j = i; j <= N; j++) chmax(s2, g[j + 1] + f[j] - f[i - 1]); 
    		chmax(ans, max(s1 + s2, f[i - 1] + g[i]));
    	}
    	cout << ans;
        return 0;
    }
    
  • 相关阅读:
    【MFC初学】
    【递归】【3月周赛1】【Problem B】
    不管ACM是不是屠龙之技
    【贪心+背包】【HDU2546】【饭卡】
    【精度问题】【HDU2899】Strange fuction
    【泛化物品】【HDU1712】【ACboy needs your help】
    【递推】【HDU2585】【hotel】
    【二进制拆分多重背包】【HDU1059】【Dividing】
    【水:最长公共子序列】【HDU1159】【Common Subsequence】
    【递推+矩阵快速幂】【HDU2604】【Queuing】
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10486457.html
Copyright © 2011-2022 走看看