<题目链接>
题目大意:
P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P)。
解题分析:
这题是bsgs算法的模板题。
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std; //baby_step giant_step // a^x = b (mod n) n为素数,a,b < n // 求解上式 0<=x < n的解 #define MOD 76543 int hs[MOD],head[MOD],next[MOD],id[MOD],top; void insert(int x,int y) { int k = x%MOD; hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++; } int find(int x) { int k = x%MOD; for(int i = head[k]; i != -1; i = next[i]) if(hs[i] == x) return id[i]; return -1; } int BSGS(int a,int b,int n) { memset(head,-1,sizeof(head)); top = 1; if(b == 1)return 0; int m = sqrt(n*1.0), j; long long x = 1, p = 1; for(int i = 0; i < m; ++i, p = p*a%n)insert(p*b%n,i); for(long long i = m; ;i += m) { if( (j = find(x = x*p%n)) != -1 )return i-j; if(i > n)break; } return -1; } int main() { int a,b,n; while(scanf("%d%d%d",&n,&a,&b) == 3) { int ans = BSGS(a,b,n); if(ans == -1)printf("no solution "); else printf("%d ",ans); } return 0; }
2018-08-09