zoukankan      html  css  js  c++  java
  • DiscreteFrechetDist

    计算离散的frechet 距离,通过计算两条曲线之间的点的距离,将两条曲线上的点按照距离以及曲线的趋势进行配对,最后根据这些配对的距离选出最后的离散frechet距离
    (compute discrete frechet distance between two curves )

    地图匹配算法实践:https://blog.csdn.net/happyduoduo1/article/details/51773613

    路径相似性描述:https://zhuanlan.zhihu.com/p/20159963

    function [cm, cSq] = DiscreteFrechetDist(P,Q,dfcn)
    % Calculates the discrete Frechet distance between curves P and Q
    %
    % [cm, cSq] = DiscreteFrechetDist(P,Q)
    % [cm, cSq] = DiscreteFrechetDist(...,dfcn)
    %
    % P and Q are two sets of points that define polygonal curves with rows of
    % vertices (data points) and columns of dimensionality. The points along
    % the curves are taken to be in the order as they appear in P and Q.
    %
    % Returned in cm is the discrete Frechet distance, aka the coupling
    % measure, which is zero when P equals Q and grows positively as the curves
    % become more dissimilar.
    %
    % The optional dfcn argument allows the user to specify a function with
    % which to calculate distance between points in P and Q. If not provided,
    % the L2 norm is used.
    %
    % The secondary output, cSq, is the coupling sequence, that is, the
    % sequence of steps along each curve that must be followed to achieve the
    % minimum coupling distance, cm. The output is returned in the form of a
    % matrix with column 1 being the index of each point in P and column 2
    % being the index of each point in Q. (NOTE: the coupling sequence is not
    % unique in general)
    %
    % Explanation:
    % The Frechet distance is a measure of similarity between to curves, P and
    % Q. It is defined as the minimum cord-length sufficient to join a point
    % traveling forward along P and one traveling forward along Q, although the
    % rate of travel for either point may not necessarily be uniform.
    %
    % The Frechet distance, FD, is not in general computable for any given
    % continuous P and Q. However, the discrete Frechet Distance, also called
    % the coupling measure, cm, is a metric that acts on the endpoints of
    % curves represented as polygonal chains. The magnitude of the coupling
    % measure is bounded by FD plus the length of the longest segment in either
    % P or Q, and approaches FD in the limit of sampling P and Q.
    %
    % This function implements the algorithm to calculate discrete Frechet
    % distance outlined in:
    % T. Eiter and H. Mannila. Computing discrete Frechet distance. Technical
    % Report 94/64, Christian Doppler Laboratory, Vienna University of
    % Technology, 1994.
    %
    %
    %
    % EXAMPLE:
    % % create data
    % t = 0:pi/8:2*pi;
    % y = linspace(1,3,6);
    % P = [(2:7)' y']+0.3.*randn(6,2);
    % Q = [t' sin(t')]+2+0.3.*randn(length(t),2);
    % [cm, cSq] = DiscreteFrechetDist(P,Q);
    % % plot result
    % figure
    % plot(Q(:,1),Q(:,2),'o-r','linewidth',3,'markerfacecolor','r')
    % hold on
    % plot(P(:,1),P(:,2),'o-b','linewidth',3,'markerfacecolor','b')
    % title(['Discrete Frechet Distance of curves P and Q: ' num2str(cm)])
    % legend('Q','P','location','best')
    % line([2 cm+2],[0.5 0.5],'color','m','linewidth',2)
    % text(2,0.4,'dFD length')
    % for i=1:length(cSq)
    % line([P(cSq(i,1),1) Q(cSq(i,2),1)],...
    % [P(cSq(i,1),2) Q(cSq(i,2),2)],...
    % 'color',[0 0 0]+(i/length(cSq)/1.35));
    % end
    % axis equal
    % % display the coupling sequence along with each distance between points
    % disp([cSq sqrt(sum((P(cSq(:,1),:) - Q(cSq(:,2),:)).^2,2))])
    %
    %
    %
    % %%% ZCD June 2011 %%%
    % %%% edits ZCD May 2013: 1) remove excess arguments to internal functions
    % and persistence for speed, 2) added example, 3) allowed for user defined
    % distance function, 4) added aditional output option for coupling sequence
    %


    % size of the data curves
    sP = size(P);
    sQ = size(Q);

    % check validity of inputs
    if sP(2)~=sQ(2)
    error('Curves P and Q must be of the same dimension')
    elseif sP(1)==0
    cm = 0;
    return;
    end

    % initialize CA to a matrix of -1s
    CA = ones(sP(1),sQ(1)).*-1;

    % distance function
    if nargin==2
    dfcn = @(u,v) sqrt(sum( (u-v).^2 ));
    end

    % final coupling measure value
    cm = c(sP(1),sQ(1));

    % obtain coupling measure via backtracking procedure
    if nargout==2
    cSq = zeros(sQ(1)+sP(1)+1,2); % coupling sequence
    CApad = [ones(1,sQ(1)+1)*inf; [ones(sP(1),1)*inf CA]]; % pad CA
    Pi=sP(1)+1; Qi=sQ(1)+1; count=1; % counting variables
    while Pi~=2 || Qi~=2
    % step down CA gradient
    [v,ix] = min([CApad(Pi-1,Qi) CApad(Pi-1,Qi-1) CApad(Pi,Qi-1)]);
    if ix==1
    cSq(count,:) = [Pi-1 Qi];
    Pi=Pi-1;
    elseif ix==2
    cSq(count,:) = [Pi-1 Qi-1];
    Pi=Pi-1; Qi=Qi-1;
    elseif ix==3
    cSq(count,:) = [Pi Qi-1];
    Qi=Qi-1;
    end
    count=count+1;
    end
    % format output: remove extra zeroes, reverse order, subtract off
    % padding value, and add in the last point
    cSq = [flipud(cSq(1:find(cSq(:,1)==0,1,'first')-1,:))-1; sP(1) sQ(1)];
    end


    % debug
    % assignin('base','CAw',CA)

    function CAij = c(i,j)
    % coupling search function
    if CA(i,j)>-1
    % don't update CA in this case
    CAij = CA(i,j);
    elseif i==1 && j==1
    CA(i,j) = dfcn(P(1,:),Q(1,:)); % update the CA permanent
    CAij = CA(i,j); % set the current relevant value
    elseif i>1 && j==1
    CA(i,j) = max( c(i-1,1), dfcn(P(i,:),Q(1,:)) );
    CAij = CA(i,j);
    elseif i==1 && j>1
    CA(i,j) = max( c(1,j-1), dfcn(P(1,:),Q(j,:)) );
    CAij = CA(i,j);
    elseif i>1 && j>1
    CA(i,j) = max( min([c(i-1,j), c(i-1,j-1), c(i,j-1)]),...
    dfcn(P(i,:),Q(j,:)) );
    CAij = CA(i,j);
    else
    CA(i,j) = inf;
    end
    end % end function, c

    end % end main function

  • 相关阅读:
    福大软工 · 第八次作业(课堂实战)- 项目UML设计(团队)
    福大软工1816 · 第六次作业
    福大软工1816 · 第五次作业
    福大软工1816
    福大软工1816 · 第三次作业
    alpha冲刺总结随笔
    alpha-咸鱼冲刺day8
    alpha-咸鱼冲刺day9
    alpha-咸鱼冲刺day7
    alpha-咸鱼冲刺day5
  • 原文地址:https://www.cnblogs.com/2008nmj/p/9069306.html
Copyright © 2011-2022 走看看