zoukankan      html  css  js  c++  java
  • Codeforces Round #278 (Div. 1) B. Strip

    B. Strip
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right.

    Now Alexandra wants to split it into some pieces (possibly 1). For each piece of strip, it must satisfy:

    • Each piece should contain at least l numbers.
    • The difference between the maximal and the minimal number on the piece should be at most s.

    Please help Alexandra to find the minimal number of pieces meeting the condition above.

    Input

    The first line contains three space-separated integers n, s, l (1 ≤ n ≤ 105, 0 ≤ s ≤ 109, 1 ≤ l ≤ 105).

    The second line contains n integers ai separated by spaces ( - 109 ≤ ai ≤ 109).

    Output

    Output the minimal number of strip pieces.

    If there are no ways to split the strip, output -1.

    Sample test(s)
    input
    7 2 2
    1 3 1 2 4 1 2
    output
    3
    input
    7 2 2
    1 100 1 100 1 100 1
    output
    -1
    Note

    For the first sample, we can split the strip into 3 pieces: [1, 3, 1], [2, 4], [1, 2].

    For the second sample, we can't let 1 and 100 be on the same piece, so no solution exists.

    思路: dp[i] 表示 以 i 结尾,最前可以覆盖到哪里

    这个可以用二分+线段树搞出来,然后ans1[i] 表示,前 i 个合并的最少分组

    对于第i 个点,其合法的覆盖范围是 dp[i] ~ i-l+1 , 那么 ans1[i] = 1+min(ans[j]) ,  

    dp[i]-1 <= j <= i-l  ;我们只要用线段树维护 ans1[] 就好了

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<set>
    #include<stack>
    #include<map>
    #include<ctime>
    #include<bitset>
    #define LL long long
    #define maxn 100010
    #define INF 0x3f3f3f3f
    #define mod 1000000007
    using namespace std;
    
    int Min[maxn*3],Max[maxn*3] ;
    int dp[maxn],a[maxn] ;
    int ql,qr,v1,v2,n,s;
    
    void build(int L,int R,int o)
    {
        if(L==R)
        {
            Max[o]=Min[o]=a[L] ;
            return ;
        }
        int mid=(L+R)>>1 ;
        build(L,mid,o<<1) ;
        build(mid+1,R,o<<1|1) ;
        Min[o]=min(Min[o<<1],Min[o<<1|1]) ;
        Max[o]=max(Max[o<<1],Max[o<<1|1]) ;
    }
    void find(int L,int R,int o )
    {
        if(ql<=L&&qr>=R)
        {
            v1=max(Max[o],v1) ;
            v2=min(Min[o],v2) ;
            return ;
        }
        int mid=(L+R)>>1 ;
        if(ql<=mid) find(L,mid,o<<1) ;
        if(qr>mid) find(mid+1,R,o<<1|1) ;
    }
    
    void update(int L,int R,int o)
    {
        if(L==R)
        {
            Min[o]=v1;
            Max[o]=v2;
            return ;
        }
        int mid=(L+R)>>1;
        if(ql<=mid) update(L,mid,o<<1) ;
        else update(mid+1,R,o<<1|1) ;
        if(Min[o<<1] < Min[o<<1|1])
        {
            Min[o]=Min[o<<1] ;
            Max[o]=Max[o<<1] ;
        }
        else
        {
            Min[o]=Min[o<<1|1] ;
            Max[o]=Max[o<<1|1] ;
        }
    }
    void find1(int L,int R,int o)
    {
        if(ql<=L&&qr>=R)
        {
            if(Min[o]<v1)
            {
                v2=Max[o] ;
                v1=Min[o] ;
            }
            return ;
        }
        int mid=(L+R)>>1 ;
        if(ql<=mid) find1(L,mid,o<<1) ;
        if(qr>mid) find1(mid+1,R,o<<1|1) ;
    }
    bool check(int &L,int &R)
    {
        ql=L;
        qr=R;
        v1=-INF;
        v2=INF;
        find(1,n,1) ;
        if(v1-v2<=s) return true;
        return false;
    }
    int ans1[maxn];
    int main()
    {
        int i,j,k,m;
        int L,R,mid,ans,l;
        while(scanf("%d%d%d",&n,&s,&l) != EOF)
        {
            for( i = 1 ; i <= n ;i++)
                scanf("%d",&a[i]) ;
            if(l>n)
            {
                puts("-1") ;
                continue;
            }
            build(1,n,1) ;
            for(i = l ; i <= n ;i++)
            {
                L=1;
                R=i-l+1;
                ans=-1;
                while(L<=R)
                {
                    mid=(L+R)>>1 ;
                    if(check(mid,i)){
                            R=mid-1;
                            ans=mid;
                    }
                    else L =mid+1;
                }
                dp[i]=ans;
            }
            memset(Min,INF,sizeof(Min)) ;
            for(i = l ; i <= n ;i++)
            {
                if(dp[i]==1) ans1[i]=1;
                else if(dp[i]==-1)ans1[i]=INF;
                else {
                    ql=dp[i]-1;
                    qr=i-l;
                    v1=INF;
                    if(ql<=qr) find1(1,n,1) ;
                    if(v1 != INF)
                    {
                        ans1[i]=ans1[v2]+1;
                    }
                    else ans1[i]=INF;
                }
                if(ans1[i] != INF)
                {
                    ql=i;
                    v1=ans1[i];
                    v2=i;
                    update(1,n,1) ;
                }
               // cout<<i<<" "<<ans1[i]<<endl;
            }
            ans=ans1[n] ;
            if(ans==INF)ans=-1;
            cout<<ans<<endl;
        }
        return 0 ;
    }
    View Code
  • 相关阅读:
    Delphi以及三方控件的源代码规模
    InitInheritedComponent的执行过程
    poj 3897 Maze Stretching 二分+A*搜索
    一些窗口API函数,比如SetForegroundWindow,SwitchToThisWindow
    终于懂了:WM_PAINT 与 WM_ERASEBKGND(三种情况:用户操作,UpdateWindow,InvalidateRect产生的效果并不相同),并且用Delphi代码验证 good
    窗口绘制有关的消息整理 WM_PAINT, WM_NCPAINT, WM_ERASEBKGND
    WM_PAINT与WM_ERASEBKGND(用户操作和API这两种情况产生消息的顺序有所不同)
    关于WM_ERASEBKGND和WM_PAINT的深刻理解
    offsetHeight在OnLoad中为0的现象
    TWinControl.WMNCPaint对非客户的绘制
  • 原文地址:https://www.cnblogs.com/20120125llcai/p/4115909.html
Copyright © 2011-2022 走看看