zoukankan      html  css  js  c++  java
  • 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)

    主要内容:

    1. OMP的算法流程
    2. OMP的MATLAB实现
    3. 一维信号的实验与结果
    4. 测量数M与重构成功概率关系的实验与结果
    5. 稀疏度K与重构成功概率关系的实验与结果

    一、OMP的算法流程

    二、OMP的MATLAB实现(CS_OMP.m)

    function [ theta ] = CS_OMP( y,A,iter )
    %   CS_OMP
    %   y = Phi * x
    %   x = Psi * theta
    %    y = Phi * Psi * theta
    %   令 A = Phi*Psi, 则y=A*theta
    %   现在已知y和A,求theta
    %   iter = 迭代次数 
        [m,n] = size(y);
        if m<n
            y = y'; %y should be a column vector
        end
        [M,N] = size(A); %传感矩阵A为M*N矩阵
        theta = zeros(N,1); %用来存储恢复的theta(列向量)
        At = zeros(M,iter); %用来迭代过程中存储A被选择的列
        pos_num = zeros(1,iter); %用来迭代过程中存储A被选择的列序号
        res = y; %初始化残差(residual)为y
        for ii=1:iter %迭代t次,t为输入参数
            product = A'*res; %传感矩阵A各列与残差的内积
            [val,pos] = max(abs(product)); %找到最大内积绝对值,即与残差最相关的列
            At(:,ii) = A(:,pos); %存储这一列
            pos_num(ii) = pos; %存储这一列的序号
            A(:,pos) = zeros(M,1); %清零A的这一列,其实此行可以不要,因为它与残差正交
            % y=At(:,1:ii)*theta,以下求theta的最小二乘解(Least Square)
            theta_ls = (At(:,1:ii)'*At(:,1:ii))^(-1)*At(:,1:ii)'*y;%最小二乘解
            % At(:,1:ii)*theta_ls是y在At(:,1:ii)列空间上的正交投影
            res = y - At(:,1:ii)*theta_ls; %更新残差        
        end
        theta(pos_num)=theta_ls;% 恢复出的theta
    end

    三、一维信号的实验与结果(CS_Reconstuction_Test.m

    %压缩感知重构算法OMP测试
    %以一维信号为例
    clear all;close all;clc;
    M = 64;%观测值个数
    N = 256;%信号x的长度
    K = 10;%信号x的稀疏度
    Index_K = randperm(N);
    x = zeros(N,1);
    x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
    Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵,x=Psi*theta
    Phi = randn(M,N);%测量矩阵为高斯矩阵
    A = Phi * Psi;%传感矩阵
    y = Phi * x;%得到观测向量y
    %% 恢复重构信号x
    tic
    theta = CS_OMP(y,A,K);
    x_r = Psi * theta;% x=Psi * theta
    toc
    %% 绘图
    figure;
    plot(x_r,'k.-');%绘出x的恢复信号
    hold on;
    plot(x,'r');%绘出原信号x
    hold off;
    legend('Recovery','Original')
    fprintf('
    恢复残差:');
    norm(x_r-x)%恢复残差

    四、测量数M与重构成功概率关系的实验与结果(CS_Reconstuction_MtoPercentage.m)

    %   压缩感知重构算法测试CS_Reconstuction_MtoPercentage.m
    %   绘制参考文献中的Fig.1
    %   参考文献:Joel A. Tropp and Anna C. Gilbert 
    %   Signal Recovery From Random Measurements Via Orthogonal Matching
    %   Pursuit,IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12,
    %   DECEMBER 2007.
    
    clear all;close all;clc;
    
    %% 参数配置初始化
    CNT = 1000; %对于每组(K,M,N),重复迭代次数
    N = 256; %信号x的长度
    Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
    K_set = [4,12,20,28,36]; %信号x的稀疏度集合
    Percentage = zeros(length(K_set),N); %存储恢复成功概率
    
    %% 主循环,遍历每组(K,M,N)
    tic
    for kk = 1:length(K_set)
        K = K_set(kk); %本次稀疏度
        M_set = K:5:N; %M没必要全部遍历,每隔5测试一个就可以了
        PercentageK = zeros(1,length(M_set)); %存储此稀疏度K下不同M的恢复成功概率
        for mm = 1:length(M_set)
           M = M_set(mm); %本次观测值个数
           P = 0;
           for cnt = 1:CNT %每个观测值个数均运行CNT次
                Index_K = randperm(N);
                x = zeros(N,1);
                x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的                
                Phi = randn(M,N); %测量矩阵为高斯矩阵
                A = Phi * Psi; %传感矩阵
                y = Phi * x; %得到观测向量y
                theta = CS_OMP(y,A,K); %恢复重构信号theta
                x_r = Psi * theta; % x=Psi * theta
                if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                    P = P + 1;
                end
           end
           PercentageK(mm) = P/CNT*100; %计算恢复概率
        end
        Percentage(kk,1:length(M_set)) = PercentageK;
    end
    toc
    save MtoPercentage1000 %运行一次不容易,把变量全部存储下来
    
    %% 绘图
    S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
    figure;
    for kk = 1:length(K_set)
        K = K_set(kk);
        M_set = K:5:N;
        L_Mset = length(M_set);
        plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号
        hold on;
    end
    hold off;
    xlim([0 256]);
    legend('K=4','K=12','K=20','K=28','K=36');
    xlabel('Number of measurements(M)');
    ylabel('Percentage recovered');
    title('Percentage of input signals recovered correctly(N=256)(Gaussian)');

    五、稀疏度K与重构成功概率关系的实验与结果(CS_Reconstuction_KtoPercentage.m)

    %   压缩感知重构算法测试CS_Reconstuction_KtoPercentage.m
    %   绘制参考文献中的Fig.2
    %   参考文献:Joel A. Tropp and Anna C. Gilbert 
    %   Signal Recovery From Random Measurements Via Orthogonal Matching
    %   Pursuit,IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12,
    %   DECEMBER 2007.
    %   
    clear all;close all;clc;
    
    %% 参数配置初始化
    CNT = 1000; %对于每组(K,M,N),重复迭代次数
    N = 256; %信号x的长度
    Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
    M_set = [52,100,148,196,244]; %测量值集合
    Percentage = zeros(length(M_set),N); %存储恢复成功概率
    
    %% 主循环,遍历每组(K,M,N)
    tic
    for mm = 1:length(M_set)
        M = M_set(mm); %本次测量值个数
        K_set = 1:5:ceil(M/2); %信号x的稀疏度K没必要全部遍历,每隔5测试一个就可以了
        PercentageM = zeros(1,length(K_set)); %存储此测量值M下不同K的恢复成功概率
        for kk = 1:length(K_set)
           K = K_set(kk); %本次信号x的稀疏度K
           P = 0;
           for cnt = 1:CNT %每个观测值个数均运行CNT次
                Index_K = randperm(N);
                x = zeros(N,1);
                x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的                
                Phi = randn(M,N); %测量矩阵为高斯矩阵
                A = Phi * Psi; %传感矩阵
                y = Phi * x; %得到观测向量y
                theta = CS_OMP(y,A,K); %恢复重构信号theta
                x_r = Psi * theta; % x=Psi * theta
                if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                    P = P + 1;
                end
           end
           PercentageM(kk) = P/CNT*100; %计算恢复概率
        end
        Percentage(mm,1:length(K_set)) = PercentageM;
    end
    toc
    save KtoPercentage1000test %运行一次不容易,把变量全部存储下来
    
    %% 绘图
    S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
    figure;
    for mm = 1:length(M_set)
        M = M_set(mm);
        K_set = 1:5:ceil(M/2);
        L_Kset = length(K_set);
        plot(K_set,Percentage(mm,1:L_Kset),S(mm,:));%绘出x的恢复信号
        hold on;
    end
    hold off;
    xlim([0 125]);
    legend('M=52','M=100','M=148','M=196','M=244');
    xlabel('Sparsity level(K)');
    ylabel('Percentage recovered');
    title('Percentage of input signals recovered correctly(N=256)(Gaussian)');

    六、参考文章

    http://blog.csdn.net/jbb0523/article/details/45268141

    更多OMP请参考:浅谈压缩感知(九):正交匹配追踪算法OMP

  • 相关阅读:
    angular $modal 模态框
    过滤器 ||(filter)
    info sharp Are you trying to install as a root or sudo user? Try again with the --unsafe-perm flag
    git error: unable to create file Invalid argument
    bash shell 快捷键
    options has an unknown property 'modifyVars'. These properties are valid: 处理方法
    test 分支强制替换master 分支的办法
    脚本统计代码行数
    git commit 后,没有push ,怎么撤销
    php 用户ip的获取
  • 原文地址:https://www.cnblogs.com/AndyJee/p/5113293.html
Copyright © 2011-2022 走看看