Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
http://acm.hdu.edu.cn/data/images/1016-1.gif
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6
1 6 5 2 3 4
Case 2: 1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
代码:
//该题思路简单,精髓在于对回溯与数组的灵活使用
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
bool vis[25];
int num[25],sum,n;
bool is_prime(int x,int y)//判素数
{
int k=x+y;
if(k==1) return false;
for(int i=2;i*i<=k;i++)
if(k%i==0) return false;
return true;
}
void dfs(int sum)
{
if(sum>n)
{
if(is_prime(num[1],num[n]))//如果头尾相加为素数,说明可行
{
for(int i=1;i<n;i++)
printf("%d ",num[i]);
printf("%d
",num[n]);
}
}
for(int i=2;i<=n;i++)
{
if(is_prime(i,num[sum-1])&&!vis[i])
{
vis[i]=1;
num[sum]=i;
dfs(sum+1);
vis[i]=0;//回溯
}
}
}
int main()
{
int cnt=0;
while(~scanf("%d",&n))
{
memset(vis,0,sizeof(vis));
vis[1]=1,num[1]=1;//初始化
printf("Case %d:
",++cnt);
dfs(2);
printf("
");
}
return 0;
}