zoukankan      html  css  js  c++  java
  • MATLAB之数学建模:深圳市生活垃圾处理社会总成本分析

    MATLAB之数学建模:深圳市生活垃圾处理社会总成本分析

    注:MATLAB版本--2016a,作图分析部分见《MATLAB之折线图、柱状图、饼图以及常用绘图技巧》

    一.现状模式下的模型

    %第一题:建立总成本分析模型/年:按现状分析
    % 总成本=直接成本 +经济技术成本 + 社会成本
    function dataPro = Total_Cost_Analysis(year)
    %垃圾每年预测表:2017-2030
    table = [ 6.4450e+06   6.8317e+06 7.2416e+06   7.6761e+06   7.9832e+06   8.3025e+06   8.6346e+06 8.9800e+06   9.3392e+06   9.6193e+06   9.9079e+06  1.0205e+07   1.0511e+07   1.0827e+07];  %垃圾总量每年数值(2017-2030)
    rubbish_quantity = table(year-2016);
    %将时间分期处理:2017-2020,2021-2025,2026-2030
    switch year
        case { 2017,2018,2019,2020}          %近期
            rubbish_num_burn=215*10^4;            
            rubbish_num_landfill = rubbish_quantity-rubbish_num_burn;
            class_cost = 0;           
            handle_cost =  rubbish_num_landfill*60+ rubbish_num_burn*100;
            transport_cost = 0.5*rubbish_num_landfill*60+0.5*rubbish_num_landfill*70+...
                                        0.5*rubbish_num_burn*60+0.5*rubbish_num_burn*70 ;  
            social_cost =132*rubbish_quantity;                    
            technology_cost=1300*10^4;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
            subsidy = 100*rubbish_quantity;        %前期 100,中期50,后期取消,成本计算取负
            profit =  (10^(-4))*rubbish_quantity/102.49*10^8 ;
        case {2021,2022,2023,2024,2025}          %中期
             rubbish_num_burn =215*10^4;            
             rubbish_num_landfill = rubbish_quantity-rubbish_num_burn;
             class_cost = 0;         
             handle_cost =  rubbish_num_landfill*60+ rubbish_num_burn*150;
             transport_cost = rubbish_quantity*100;  
             social_cost =2*132*rubbish_quantity;                 
             technology_cost=1300*10^4;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy = 50*rubbish_quantity;         %前期 100,中期50,后期取消,成本计算取负
             profit =  (10^(-4))*rubbish_quantity*(1/104.15+1/100.1+1/317.46)*10^8 +rubbish_quantity/1.54*10^4;       %不同时间 定值
            
        case  {2026,2027,2028,2029,2030}        %远期
             rubbish_num_burn =215*10^4;        
             rubbish_num_landfill = rubbish_quantity-rubbish_num_burn;
             class_cost = 0;           
             handle_cost =  rubbish_num_landfill*60+ rubbish_num_burn*180;
             transport_cost = rubbish_quantity*100;  
             social_cost =2*132*rubbish_quantity;                  
             technology_cost=1300*10^4;                      % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy = 0*rubbish_quantity;                     %前期 100,中期50,后期取消,成本计算取负
             profit =  (10^(-4))*rubbish_quantity*(1/104.15+1/50.05+1/222.22)*10^8 +rubbish_quantity/1.54*10^4 ;        %不同时间 定值                      
        otherwise
             msgbox('亲,请重新输入年份:');       
    end
    
    %设施投资: 
    equipment_cost = 1.56*10^8;   
    
    %输出,分析:dataPro为数据集合
    profit =profit *0.15;    
    direct_cost =  class_cost + transport_cost + equipment_cost + handle_cost;
    total_cost = direct_cost+technology_cost +social_cost+subsidy-profit  ;
    %dataPro(11): 分类,收运,设施,处理,技术,社会,补贴,收益,直接,总,均
    dataPro = [ class_cost,transport_cost,equipment_cost,handle_cost, ...
                         technology_cost,social_cost,subsidy,profit,direct_cost,total_cost,total_cost/rubbish_quantity];
           
    end
    
    

    二. 模式一

    %模式一:总成本=直接成本 +经济技术成本 + 社会成本
    function dataPro = Total_Cost_Analysis_model1(year)
    %垃圾每年预测表:2017-2030
    table = [ 6.4450e+06   6.8317e+06 7.2416e+06   7.6761e+06   7.9832e+06   8.3025e+06   8.6346e+06 8.9800e+06   9.3392e+06   9.6193e+06   9.9079e+06  1.0205e+07   1.0511e+07   1.0827e+07];  %垃圾总量每年数值(2017-2030)
    rubbish_quantity = table(year-2016);
    %将时间分期处理:2014-2020,2021-2025,2026-2030
    switch year
        case {2016,2017,2018,2019,2020}
            rubbish_num_burn=215*10^4;             %近期
            rubbish_num_landfill = rubbish_quantity-rubbish_num_burn;
            transport_cost = 0.5*rubbish_quantity*60+0.5*rubbish_quantity*70; 
            handle_cost =  rubbish_num_landfill*60+rubbish_num_burn*100; 
            social_cost = 132*rubbish_quantity;                 
            technology_cost=1300*10^4;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
            subsidy = 100*rubbish_quantity;       %前期 100,中期50,后期取消,成本计算取负
            profit = (10^(-4))*rubbish_quantity/102.49*10^8 ;            %不同时间 定值
             
        case {2021,2022,2023,2024,2025}
             transport_cost = rubbish_quantity*100;  
             handle_cost =  rubbish_quantity*150; 
             social_cost =8*132*rubbish_quantity;                    
             technology_cost=1300*10^4;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy = 50*rubbish_quantity;       %前期 100,中期50,后期取消,成本计算取负
             profit = (10^(-4))* rubbish_quantity*(1/52.1+1/100.1 )*10^8 +rubbish_quantity/0.77*10^4;                           
             
        case  {2026,2027,2028,2029,2030}
             transport_cost = rubbish_quantity*100;
             handle_cost =  rubbish_quantity*180; 
             social_cost =8*132*rubbish_quantity;                 
             technology_cost=1300*10^4;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy =  0*rubbish_quantity;       %前期 100,中期50,后期取消,成本计算取负
             profit =  (10^(-4))*rubbish_quantity*(1/52.07+1/50.05 )*10^8 +rubbish_quantity/0.77*10^4;           
             
        otherwise
             msgbox('亲,请重新输入年份:');       
    end
    
    %分类费用
    class_cost = 0;     
    %设施投资: 
    equipment_cost =  0 ;  
    
    %输出,分析
    profit =profit *0.15;    
     direct_cost =  class_cost + transport_cost + equipment_cost + handle_cost;
    total_cost = direct_cost+technology_cost +social_cost+subsidy-profit  ;
    %dataPro(11): 分类,收运,设施,处理,技术,社会,补贴,收益,直接,总,均
    dataPro = [ class_cost,transport_cost,equipment_cost,handle_cost, ...
                         technology_cost,social_cost,subsidy,profit,direct_cost,total_cost,total_cost/rubbish_quantity];
    
    end
    
    

    三. 模式二

    %模式二:源头分类收集+湿垃圾生物处理+干垃圾焚烧+中心城区干垃圾转运 
    function dataPro = Total_Cost_Analysis_model2(year)
    %垃圾每年预测表:2017-2030
    table = [ 6.4450e+06   6.8317e+06 7.2416e+06   7.6761e+06   7.9832e+06   8.3025e+06   8.6346e+06 8.9800e+06   9.3392e+06   9.6193e+06   9.9079e+06  1.0205e+07   1.0511e+07   1.0827e+07];  %垃圾总量每年数值(2017-2030)
    rubbish_quantity = table(year-2016);
    switch year
        case {2016,2017,2018,2019,2020}
            rubbish_num_burn=215*10^4;             %近期
            rubbish_num_landfill = rubbish_quantity-rubbish_num_burn;
            class_cost = 0;    
            transport_cost = 0.5*rubbish_quantity*60+0.5*rubbish_quantity*70;  
            handle_cost =  rubbish_num_landfill*60+rubbish_num_burn*100;   
            social_cost =132*rubbish_quantity;             
            technology_cost=1300*10^4+10^8;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
            subsidy = 100*rubbish_quantity;       %前期 100,中期50,后期取消,成本计算取负
            profit =  (10^(-4))*rubbish_quantity/102.49*10^8 ;                           %不同时间 定值
             
        case {2021,2022,2023,2024,2025}
             class_cost = 10.6*10^8;    
             transport_cost = 0.4*rubbish_quantity*60+0.6*rubbish_quantity*100;  
             handle_cost =   rubbish_quantity*150;
             social_cost =1.2*132*rubbish_quantity;                   % (year-2017)
             technology_cost=1300*10^4+0.7*10^8;           % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy = 50*rubbish_quantity;                          %前期 100,中期50,后期取消,成本计算取负
             profit =  (10^(-4))*rubbish_quantity*(1/72.31+1/396.83+1/100.1)*10^8 +rubbish_quantity/1.28*10^4 ;         %不同时间 定值
     
        case  {2026,2027,2028,2029,2030}
             class_cost = 10.6*10^8;    
             transport_cost = 0.5*rubbish_quantity*60+0.5*rubbish_quantity*100;   
             handle_cost =   0.5*rubbish_quantity*180+ 0.5*rubbish_quantity*200;
             social_cost =1.2*132*rubbish_quantity;                   % (year-2017)
             technology_cost=1300*10^4+0.4*10^8;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy =  0*rubbish_quantity;       %前期 100,中期50,后期取消,成本计算取负
             profit = (10^(-4))* rubbish_quantity*(1/77.98+1/277.78+1/50.05)*10^8 +rubbish_quantity/1.28*10^4;                        
             
        otherwise
             msgbox('亲,请重新输入年份:');       
    end       
    
    %设施投资: 
    equipment_cost = 0;   
    
    %输出,分析
    profit =profit *0.15;    
     direct_cost =  class_cost + transport_cost + equipment_cost + handle_cost;
    total_cost = direct_cost+technology_cost +social_cost+subsidy-profit  ;
    %dataPro(11): 分类,收运,设施,处理,技术,社会,补贴,收益,直接,总,均
    dataPro = [ class_cost,transport_cost,equipment_cost,handle_cost, ...
                         technology_cost,social_cost,subsidy,profit,direct_cost,total_cost,total_cost/rubbish_quantity];
    
    end
    
    
    
    

    四. 模式三

    %模式三:混合收集+末端分类+湿垃圾生物处理+干垃圾焚烧+中心城区干垃圾转运
    function dataPro = Total_Cost_Analysis_model3(year)
    %垃圾每年预测表:2017-2030
    table = [ 6.4450e+06   6.8317e+06 7.2416e+06   7.6761e+06   7.9832e+06   8.3025e+06   8.6346e+06 8.9800e+06   9.3392e+06   9.6193e+06   9.9079e+06  1.0205e+07   1.0511e+07   1.0827e+07];  %垃圾总量每年数值(2017-2030)
    rubbish_quantity = table(year-2016);
    switch year
        case {2016,2017,2018,2019,2020}
            rubbish_num_burn=215*10^4;             %近期
            rubbish_num_landfill = rubbish_quantity-rubbish_num_burn;
            transport_cost = 0.5*rubbish_quantity *60+0.5*rubbish_quantity *70  ;  
            handle_cost =  rubbish_num_landfill*60+rubbish_num_burn*100; 
            social_cost =132*rubbish_quantity;                  
            technology_cost=1300*10^4+10^8;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
            subsidy = 100*rubbish_quantity;                  %前期 100,中期50,后期取消,成本计算取负
            profit =  (10^(-4))*rubbish_quantity/102.49*10^8 ;           %不同时间 定值
             
        case {2021,2022,2023,2024,2025}
             handle_cost =   0.5*rubbish_quantity*150+ 0.5*rubbish_quantity*200;
             transport_cost = 0.4*rubbish_quantity*60+0.6*rubbish_quantity*100;  
             social_cost =132*rubbish_quantity;                  
             technology_cost=1300*10^4+0.7*10^8;           % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy = 50*rubbish_quantity;                          %前期 100,中期50,后期取消,成本计算取负
             profit =  (10^(-4))*rubbish_quantity*(1/86.87+1/317.46+1/100.1)*10^8 +rubbish_quantity/1.54*10^4;          %不同时间 定值
                                   
        case  {2026,2027,2028,2029,2030}
             handle_cost =   0.5*rubbish_quantity*180+ 0.5*rubbish_quantity*200;
             transport_cost = 0.4*rubbish_quantity*60+0.6*rubbish_quantity*100;  
             social_cost =132*rubbish_quantity;                    
             technology_cost=1300*10^4+0.4*10^8;            % 湿处理分期:10^8,0.7*10^8,0.4*10^8
             subsidy =  0*rubbish_quantity;               %前期 100,中期50,后期取消,成本计算取负
             profit =  (10^(-4))*rubbish_quantity*(1/86.80+1/222.22+1/50.05)*10^8 +rubbish_quantity/1.54*10^4;           %不同时间 定值
        
        otherwise
             msgbox('亲,请重新输入年份:');       
    end  
    
    %设施投资: 
    equipment_cost = 0;   
    %分类
    class_cost = 0;   
    %输出,分析
    profit =profit *0.15;    
    direct_cost =  class_cost + transport_cost + equipment_cost + handle_cost;
    total_cost = direct_cost+technology_cost +social_cost+subsidy-profit  ;
    %dataPro(11): 分类,收运,设施,处理,技术,社会,补贴,收益,直接,总,均
    dataPro = [ class_cost,transport_cost,equipment_cost,handle_cost, ...
                         technology_cost,social_cost,subsidy,profit,direct_cost,total_cost,total_cost/rubbish_quantity];
    
     end
    
    
    
    

    五. 垃圾总量预测

    %垃圾总量预测
    rubbish_table = zeros(1,14);
    rubbish_table(1,1) = 541.14*10^4;    %2014年垃圾产量541.14万吨
    for year = 2015:2020
        rubbish_table(1,year-2013) =  rubbish_table (1,year-2014)*(1+0.06);
    end
    for year = 2021:2025
        rubbish_table(1,year-2013) =  rubbish_table (1,year-2014)*(1+0.04);
    end
    for year = 2026:2030
        rubbish_table(1,year-2013) =  rubbish_table (1,year-2014)*(1+0.03);
    end
        
    

    六.各模式数据汇总

    % 总成本=直接成本 +经济技术成本 + 社会成本
    %数据收集data_model(从2017-2030年:现状,模式一,模式二,模式三)
    clear;close;clc;
    data_model0 = zeros(14, 11);
    data_model1 = zeros(14, 11);
    data_model2 = zeros(14, 11);
    data_model3 = zeros(14, 11);
    for year = 2017 : 2030
        dataPro0 = Total_Cost_Analysis(year );                %现状
        dataPro1 = Total_Cost_Analysis_model1(year );
        dataPro2 = Total_Cost_Analysis_model2(year );
        dataPro3 = Total_Cost_Analysis_model3(year );
        for i = 1:11
            data_model0(year-2016,i) = dataPro0(i);
            data_model1(year-2016,i) = dataPro1(i);
            data_model2(year-2016,i) = dataPro2(i);
            data_model3(year-2016,i) = dataPro3(i);
        end
    end
    
    

    七.最优模式评选

    %优选模式计算:分类0.3,设施0.5,收运1.5,处理1,技术1,社会1.7,收益-2
    %原理较复杂,优选模式以远期成本最优,并且设定不同成本的比重,所得结果为每吨垃圾的成本
    %
    table = [9.6193e+06   9.9079e+06  1.0205e+07   1.0511e+07   1.0827e+07];  %垃圾总量每年数值(远期2025-2030)
    rubbish_quantity = sum(table,2);
    
    x=0.3*sum(data_model0(10:14,1))+0.5*sum(data_model0(10:14,3))+1.5*sum(data_model0(10:14,2))+...
          1*sum(data_model0(10:14,4))+1*sum(data_model0(10:14,5))+1.7*sum(data_model0(10:14,6))+...
            2*sum(data_model0(10:14,8));
    table0 =x/rubbish_quantity     %现状模式 /rubbish_quantity 
    
    x=0.3*sum(data_model1(10:14,1))+0.5*sum(data_model1(10:14,3))+1.5*sum(data_model1(10:14,2))+...
          1*sum(data_model1(10:14,4))+1*sum(data_model1(10:14,5))+1.7*sum(data_model1(10:14,6))+...
            2*sum(data_model1(10:14,8));
    table1 =  x/rubbish_quantity     %模式一
    
    x=0.3*sum(data_model2(10:14,1))+0.5*sum(data_model2(10:14,3))+1.5*sum(data_model2(10:14,2))+...
          1*sum(data_model2(10:14,4))+1*sum(data_model2(10:14,5))+1.7*sum(data_model2(10:14,6))+...
            2*sum(data_model2(10:14,8));
    table2 =  x/rubbish_quantity     %模式二
    
    x=0.3*sum(data_model3(10:14,1))+0.5*sum(data_model3(10:14,3))+1.5*sum(data_model3(10:14,2))+...
          1*sum(data_model3(10:14,4))+1*sum(data_model3(10:14,5))+1.7*sum(data_model3(10:14,6))+...
            2*sum(data_model3(10:14,8));
    table3 =  x/rubbish_quantity    %模式三
    
  • 相关阅读:
    YII框架学习(二)
    YII框架学习(一)
    valid number 判断字符串是否为有效数字
    leetcode Add Binary
    leetcode Minimum Path Sum
    leetcode Unique Paths II
    leetcode[61] Unique Paths
    leetcode[60] Rotate List
    leetcode Permutation Sequence
    leetcode Spiral Matrix II
  • 原文地址:https://www.cnblogs.com/HZL2017/p/6880648.html
Copyright © 2011-2022 走看看