zoukankan      html  css  js  c++  java
  • Common Subsequence(最长公共子序列)

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    题解:动态规划

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    int main()
    {
    	char a[1005],b[1005];
    	int dp[1005][1005];
    	while(scanf("%s%s",a,b)!=EOF)
    	{
    		memset(dp,0,sizeof(dp));
    		for(int t=1;t<=strlen(a);t++)
    		{
    			for(int j=1;j<=strlen(b);j++)
    			{
    				if(a[t-1]==b[j-1])
    				{
    					dp[t][j]=max(dp[t-1][j-1]+1,dp[t][j]);
    				}
    				else
    				{
    					dp[t][j]=max(dp[t-1][j],dp[t][j-1]);
    				}
    			}
    		}
    		printf("%d
    ",dp[strlen(a)][strlen(b)]);
    	}
    	
    	
    }
  • 相关阅读:
    CoreData数据库浅析
    FMDB第三方框架
    SQLite浅析
    iOS开发工程师面试题(二)
    iOS开发工程师面试题(一)
    RunTime&RunLoop初见
    GCD定时器
    2016年4月21百度iOS实习生在线笔试题&编程题
    网络天荒地老之UIWebView&WebKit
    expdp/impdp
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10782064.html
Copyright © 2011-2022 走看看