zoukankan      html  css  js  c++  java
  • Common Subsequence(最长公共子序列)

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    题解:动态规划

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    int main()
    {
    	char a[1005],b[1005];
    	int dp[1005][1005];
    	while(scanf("%s%s",a,b)!=EOF)
    	{
    		memset(dp,0,sizeof(dp));
    		for(int t=1;t<=strlen(a);t++)
    		{
    			for(int j=1;j<=strlen(b);j++)
    			{
    				if(a[t-1]==b[j-1])
    				{
    					dp[t][j]=max(dp[t-1][j-1]+1,dp[t][j]);
    				}
    				else
    				{
    					dp[t][j]=max(dp[t-1][j],dp[t][j-1]);
    				}
    			}
    		}
    		printf("%d
    ",dp[strlen(a)][strlen(b)]);
    	}
    	
    	
    }
  • 相关阅读:
    swift3.0 运行时获取类的属性
    Runloop与autoreleasePool联系
    iOS 加载Image的两种方式
    iOS strong与weak的使用
    iOS 自定义layer的两种方式
    iOS 手势识别
    iOS Quartz2D画图
    iOS 通知的使用
    UITableViewController
    UITableView移动
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10782064.html
Copyright © 2011-2022 走看看