zoukankan      html  css  js  c++  java
  • POJ 3268 Silver Cow Party (最短路dijkstra)

    Silver Cow Party

    题目链接:

    http://acm.hust.edu.cn/vjudge/contest/122685#problem/D

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse. Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way. Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: N, M, and X Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3

    Sample Output

    10

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
    ##题意: n个人分别住在1~n个点,他们要去某个点聚会并且结束后返回家中. 求每个人的最短路程. (往返路径可以不一样).
    ##题解: 先用dijkstra求出终点到所有点的最短路径(返程). 再沿着反向路径跑一次dijkstra,求出所有点到终点的最短路径.
    ##代码: ``` cpp #include #include #include #include #include #define mid(a,b) ((a+b)>>1) #define LL long long #define maxn 1010 #define inf 0x3f3f3f3f #define IN freopen("in.txt","r",stdin); using namespace std;

    int n,m;
    int value[maxn][maxn];
    int dis[maxn];
    bool vis[maxn];
    int dis2[maxn];

    void dijkstra(int s) {
    memset(vis, 0, sizeof(vis));
    for(int i=1; i<=n; i++) dis[i] = inf;
    dis[s] = 0;

    for(int i=1; i<=n; i++) {
        int p, mindis = inf;
        for(int j=1; j<=n; j++) {
            if(!vis[j] && dis[j]<mindis)
                mindis = dis[p=j];
        }
        vis[p] = 1;
        for(int j=1; j<=n; j++) {
            if(dis[j] > dis[p]+value[p][j]) {
                dis[j] = dis[p] + value[p][j];
            }
        }
    }
    

    }

    void dijkstra2(int s) {
    memset(vis, 0, sizeof(vis));
    for(int i=1; i<=n; i++) dis2[i] = inf;
    dis2[s] = 0;

    for(int i=1; i<=n; i++) {
        int p, mindis = inf;
        for(int j=1; j<=n; j++) {
            if(!vis[j] && dis2[j]<mindis)
                mindis = dis2[p=j];
        }
        vis[p] = 1;
        for(int j=1; j<=n; j++) {
            if(dis2[j] > dis2[p]+value[j][p]) {
                dis2[j] = dis2[p] + value[j][p];
            }
        }
    }
    

    }

    int main(int argc, char const *argv[])
    {
    //IN;

    int aim;
    while(scanf("%d %d %d", &n,&m,&aim) != EOF)
    {
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                value[i][j] = inf;
        while(m--){
            int u,v,w; cin>>u>>v>>w;
            if(w < value[u][v]) value[u][v] = w;
        }
    
        dijkstra(aim);
        dijkstra2(aim);
    
        int ans = 0;
        for(int i=1; i<=n; i++) if(dis[i]!=inf && dis2[i]!=inf)
            ans = max(ans, dis[i]+dis2[i]);
    
        printf("%d
    ", ans);
    }
    
    return 0;
    

    }

  • 相关阅读:
    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)
    C++笔记(3):一些C++的基础知识点
    机器学习&数据挖掘笔记_15(关于凸优化的一些简单概念)
    机器学习&数据挖掘笔记_14(GMM-HMM语音识别简单理解)
    机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)
    Deep learning:四十三(用Hessian Free方法训练Deep Network)
    机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)
    Deep learning:四十二(Denoise Autoencoder简单理解)
    Deep learning:四十一(Dropout简单理解)
    算法设计和数据结构学习_6(单链表的递归逆序)
  • 原文地址:https://www.cnblogs.com/Sunshine-tcf/p/5751314.html
Copyright © 2011-2022 走看看