主席树,一个数据结构,能访问到历史版本的数据,常用于可持久化和区间k大值,是线段树的一个升级版。
可持久化
可持久化的意思是可以访问任意版本的数据,一眼想到的暴力做法就是开n个数组来记录,这显然是不可取的。
那么我们考虑优化。若只有单点修改,不难发现每两个版本的差别最多为1,那么我们是不是可以只更改只一个数呢?
显然是可以的。在线段树上,我们每访问到一个节点,如果该节点没有被修改,直接用指针指想该节点即可(和动态开点线段树类似)
要注意的是,我们不能像以前一样用(k*2)表示左儿子,(k*2+1)表示右儿子了(如果你用动态开点就当我没说),而是要用指针来访问左右儿子。
那我们怎么访问每一个版本呢?我们只需要对每一个版本存储一个根节点,从根节点访问就行了
这样我们就可以很好的来处理可持久化的问题了。
例题1-可持久化数组
直接采用上述方法,维护每一个版本的root即可
给出代码
#include<bits/stdc++.h>
using namespace std;
#define re register
#define il inline
#define debug printf("Now is Line : %d
",__LINE__)
#define file(a) freopen(#a".in","r",stdin);freopen(#a".out","w",stdout)
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
#define maxn 1000005
struct edge
{
int l,r,val;
}e[maxn<<4];
int n,m,a[maxn],root[maxn],cnt;
void build(int &k,int l,int r)
{
k=++cnt;
if(l==r)
{
e[cnt].val=a[l];
return;
}
int mid=(l+r)>>1;
build(e[k].l,l,mid),build(e[k].r,mid+1,r);
}
void change(int u,int &k,int l,int r,int ll,int v)
{
k=++cnt; e[k]=e[u];
if(l==r&&l==ll)
{
e[cnt].val=v;
return;
}
int mid=(l+r)>>1;
if(ll<=mid) change(e[u].l,e[k].l,l,mid,ll,v);
else change(e[u].r,e[k].r,mid+1,r,ll,v);
}
int query(int k,int l,int r,int ll)
{
//cout<<k<<' '<<l<<' '<<r<<' '<<ll<<endl;
if(l==r&&l==ll) return e[k].val;
int mid=(l+r)>>1;
if(ll<=mid) return query(e[k].l,l,mid,ll);
return query(e[k].r,mid+1,r,ll);
}
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;++i) a[i]=read();
build(root[0],1,n);
for(re int i=1;i<=m;++i)
{
int v=read(),col=read();
if(col==1)
{
int loc=read(),val=read();
change(root[v],root[i],1,n,loc,val);
}
else
{
int loc=read();
root[i]=root[v];
printf("%d
",query(root[v],1,n,loc));
}
}
return 0;
}
有了可持久化数组,那么我们便可以操作其他可持久化数据结构,如可持久化并查集
例题2-可持久化并查集
我们把每一个版本的fa数组记录下来,就可以很好的查询历史版本了。我们发现对于每次合并,fa数组只会修改一个(不能用路径压缩,因为路径压缩一次会修改很多值),所以我们直接用上述方法做就行了。
如果直接修改,那么单次复杂度可能退化成O(n),所以我们可以用启发式合并或按秩合并
给出代码
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d
",__LINE__)
#define file(a) freopen(#a".in","r",stdin);freopen(#a".out","w",stdout)
//#define int long long
#define mod 1000000007
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
#define maxn 100005
struct node
{
int l,r,val;
}e[maxn*20];
int n,m,fa[maxn],root[maxn<<1],cnt,now,dep[maxn];
void build(int &k,int l,int r)
{
k=++cnt;
if(l==r)
{
e[k].val=fa[l];
return;
}
int mid=(l+r)>>1;
build(e[k].l,l,mid),build(e[k].r,mid+1,r);
}
int query(int k,int l,int r,int ll)
{
if(l==r) return e[k].val;
int mid=(l+r)>>1;
if(ll<=mid) return query(e[k].l,l,mid,ll);
return query(e[k].r,mid+1,r,ll);
}
void change(int kk,int &k,int l,int r,int ll,int v)
{
k=++cnt; e[k]=e[kk];
if(l==r)
{
e[k].val=v;
return;
}
int mid=(l+r)>>1;
if(ll<=mid) change(e[kk].l,e[k].l,l,mid,ll,v);
else change(e[kk].r,e[k].r,mid+1,r,ll,v);
}
int get(int x)
{
int f=query(root[now],1,n,x);
if(x!=f) return get(f);
return x;
}
il void add(int k,int l,int r,int ll)
{
if(l==r)
{
++dep[k];
return;
}
int mid=(l+r)>>1;
if(ll<=mid) add(e[k].l,l,mid,ll);
else add(e[k].r,mid+1,r,ll);
}
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;++i) fa[i]=i;
build(root[0],1,n);
for(re int i=1;i<=m;++i)
{
int opt=read();
if(opt==1)
{
int x=read(),y=read();
int a=get(x),b=get(y);
if(a!=b)
{
if(dep[a]>dep[b]) swap(a,b);
change(root[now],root[i],1,n,a,b);
if(dep[a]==dep[b]) add(root[i],1,n,b);
}
else root[i]=root[now];
now=i;
}
else if(opt==2)
{
now=read();
root[i]=root[now];
}
else
{
int x=read(),y=read();
int a=get(x),b=get(y);
root[i]=root[now];
now=i;
printf("%d
",(a==b)?1:0);
}
}
return 0;
}
区间k大
我们知道,权值线段树是可以求全局k大的,那么我们可不可以用权值线段树来实现区间k大呢?
显然是可以的。我们可以先考虑1~l区间的k大。
我们给每一个点开一颗前缀的权值线段树,那么我们就可很容易的求出1~l的第k大值了。但是常规做法显然会炸空间,所以我们采用可持久化的方法来动态开点
那么区间k大怎么做呢?
这就要用到权值线段树的可减性。(权值线段树维护的是每个元素的出现个数,这显然是可减的)
于是对于段区间,我们看成连段区间相减就行了。
例题2-可持久化线段树
代码如下
#include<bits/stdc++.h>
using namespace std;
#define re register
#define il inline
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
#define maxn 200005
struct node
{
int l,r,val;
}e[maxn*20];
int n,m,root[maxn],cnt,b[maxn],a[maxn],co;
il void build(int &k,int l,int r)
{
k=++cnt;
if(l==r) return;
int mid=(l+r)>>1;
build(e[k].l,l,mid),build(e[k].r,mid+1,r);
}
il void change(int &k,int kk,int l,int r,int ll)
{
k=++cnt; e[k]=e[kk]; e[k].val++;
if(l==r) return;
int mid=(l+r)>>1;
if(ll<=mid) change(e[k].l,e[kk].l,l,mid,ll);
else change(e[k].r,e[kk].r,mid+1,r,ll);
}
il int query(int ll,int rr,int l,int r,int k)
{
int x=e[e[rr].l].val-e[e[ll].l].val;
if(l==r) return b[l];
int mid=(l+r)>>1;
if(x>=k) return query(e[ll].l,e[rr].l,l,mid,k);
return query(e[ll].r,e[rr].r,mid+1,r,k-x);
}
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;++i) a[i]=b[i]=read();
sort(b+1,b+n+1);//排序
co=unique(b+1,b+n+1)-b-1;//去重
build(root[0],1,co);
for(re int i=1;i<=n;++i)
{
int now=lower_bound(b+1,b+co+1,a[i])-b;//意思是找到和a[i]相等的b,这样做的目的是保证所有的相等的全值都能保证被分到一个下标
change(root[i],root[i-1],1,co,now);//因为是前缀权值线段树,所以在前一刻子树的基础上修改
}
while(m--)
{
int l=read(),r=read(),k=read();
printf("%d
",query(root[l-1],root[r],1,co,k));
}
return 0;
}
不那么模板的模板题
这题是强制在线,所以不能用整体二分等离线做法水过去,所以我们用主席树。
拓展到了树上,所以我们可以进行dfs,把上一题的建树过程改成change(root[i],root[fa[i]],1,co,now)即可
最后统计答案,我们不能直接用r的权值线段树-l的权值线段树,而使用l+r-lca(l,r)-fa[lca(l,r)](这里表示权值线段树),正确性类似于树上差分,在此不再赘述。
由于要求LCA,且要用dfs,所以我直接用树剖来求lca,将树剖的dfs1和要求的dfs合并在一起就行了。
给出代码
#include<bits/stdc++.h>
using namespace std;
#define re register
#define il inline
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
#define maxn 100005
struct edge
{
int v,next;
}q[maxn<<1];
struct node
{
int l,r,val;
}e[maxn*20];
int co,n,m,a[maxn],root[maxn],b[maxn],cnt,head[maxn],tot;
int fa[maxn],last,dep[maxn],size[maxn],son[maxn],top[maxn];
il void add(int u,int v)
{
q[++tot].v=v;
q[tot].next=head[u];
head[u]=tot;
}
il void build(int&k,int l,int r)
{
k=++cnt;
if(l==r) return;
int mid=(l+r)>>1;
build(e[k].l,l,mid),build(e[k].r,mid+1,r);
}
il void change(int kk,int &k,int l,int r,int ll)
{
k=++cnt; e[k]=e[kk]; e[k].val++;
if(l==r) return;
int mid=(l+r)>>1;
if(ll<=mid) change(e[kk].l,e[k].l,l,mid,ll);
else change(e[kk].r,e[k].r,mid+1,r,ll);
}
il int query(int ll,int rr,int lca,int falca,int l,int r,int k)
{
if(l==r) return b[l];
int mid=(l+r)>>1,x=e[e[rr].l].val+e[e[ll].l].val-e[e[lca].l].val-e[e[falca].l].val;
if(x>=k) return query(e[ll].l,e[rr].l,e[lca].l,e[falca].l,l,mid,k);
return query(e[ll].r,e[rr].r,e[lca].r,e[falca].r,mid+1,r,k-x);
}
il void dfs1(int u,int fr)
{
fa[u]=fr; dep[u]=dep[fr]+1; size[u]=1;
int now=lower_bound(b+1,b+co+1,a[u])-b;
change(root[fr],root[u],1,co,now);
for(re int i=head[u];i;i=q[i].next)
{
int v=q[i].v;
if(v!=fr)
{
dfs1(v,u);
size[u]+=size[v];
if(size[v]>size[son[u]]) son[u]=v;
}
}
}
il void dfs2(int u,int t)
{
top[u]=t;
if(!son[u]) return;
dfs2(son[u],t);
for(re int i=head[u];i;i=q[i].next)
{
int v=q[i].v;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
il int LCA(int a,int b)
{
while(top[a]!=top[b])
{
if(dep[top[a]]<dep[top[b]]) swap(a,b);
a=fa[top[a]];
}
if(dep[a]>dep[b]) swap(a,b);
return a;
}
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;++i) a[i]=b[i]=read();
sort(b+1,b+n+1);
co=unique(b+1,b+n+1)-b-1;
for(re int i=1;i<n;++i)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
build(root[0],1,co);
dfs1(1,0),dfs2(1,1);
for(re int i=1;i<=m;++i)
{
int l=read()^last,r=read(),k=read();
int lca=LCA(l,r);
last=query(root[l],root[r],root[lca],root[fa[lca]],1,co,k);
printf("%d
",last);
}
return 0;
}