zoukankan      html  css  js  c++  java
  • ZOJ-3822

    Domination

    Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

    Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

    "That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    There are only two integers N and M (1 <= NM <= 50).

    Output

    For each test case, output the expectation number of days.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    2
    1 3
    2 2
    

    Sample Output

    3.000000000000
    2.666666666667
    
    /**
        题意:如题
        做法:dp dp[i][j][k]   表示下第i枚棋  在j,k的位置 
    **/
    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <string.h>
    #include <stdio.h>
    using namespace std;
    #define maxn 60
    double dp[maxn * maxn][maxn][maxn];
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            int n, m;
            memset(dp, 0, sizeof(dp));
            scanf("%d %d", &n, &m);
            dp[0][0][0] = 1.0;
            for(int i = 0; i < n * m; i++)
            {
                for(int j = 0; j <= n; j++)
                {
                    for(int k = 0; k <= m; k++)
                    {
                        dp[i + 1][j + 1][k + 1] += dp[i][j][k] * (n - j) * (m - k) / (n * m - i);
                        dp[i + 1][j][k + 1] += dp[i][j][k] * j * (m - k) / (n * m - i);
                        dp[i + 1][j + 1][k] += dp[i][j][k] * (n - j) * k / (n * m - i);
                        dp[i + 1][j][k] += dp[i][j][k] * (k * j - i) / (n * m - i);
                    }
                }
            }
            double ans = 0;
            for(int i = 1; i <= n * m; i++)
            {
                ans += i * (dp[i][n][m] - dp[i - 1][n][m]);
            }
            printf("%.10f
    ", ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Django ORM中常用的字段类型以及参数配置
    python enumerate用法总结
    Django 模板渲染
    Django null=True和blank=True的区别
    Django下关于session的使用
    方程组法求函数的解析式
    求数列通项公式的小众方法
    不等式性质
    多项选择题
    对勾型函数
  • 原文地址:https://www.cnblogs.com/chenyang920/p/4850144.html
Copyright © 2011-2022 走看看