zoukankan      html  css  js  c++  java
  • ZOJ-3822

    Domination

    Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

    Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

    "That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    There are only two integers N and M (1 <= NM <= 50).

    Output

    For each test case, output the expectation number of days.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    2
    1 3
    2 2
    

    Sample Output

    3.000000000000
    2.666666666667
    
    /**
        题意:如题
        做法:dp dp[i][j][k]   表示下第i枚棋  在j,k的位置 
    **/
    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <string.h>
    #include <stdio.h>
    using namespace std;
    #define maxn 60
    double dp[maxn * maxn][maxn][maxn];
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            int n, m;
            memset(dp, 0, sizeof(dp));
            scanf("%d %d", &n, &m);
            dp[0][0][0] = 1.0;
            for(int i = 0; i < n * m; i++)
            {
                for(int j = 0; j <= n; j++)
                {
                    for(int k = 0; k <= m; k++)
                    {
                        dp[i + 1][j + 1][k + 1] += dp[i][j][k] * (n - j) * (m - k) / (n * m - i);
                        dp[i + 1][j][k + 1] += dp[i][j][k] * j * (m - k) / (n * m - i);
                        dp[i + 1][j + 1][k] += dp[i][j][k] * (n - j) * k / (n * m - i);
                        dp[i + 1][j][k] += dp[i][j][k] * (k * j - i) / (n * m - i);
                    }
                }
            }
            double ans = 0;
            for(int i = 1; i <= n * m; i++)
            {
                ans += i * (dp[i][n][m] - dp[i - 1][n][m]);
            }
            printf("%.10f
    ", ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    mysql编码和Java编码相应一览表
    Swift开发之 使用系统的TabbarController
    Shiro Quartz之Junit測试Session管理
    爱加密Android APk 原理解析
    【机器学习基础】自适应提升
    select默认选择的实现方法
    怎样找对还有一半--第一章 品行与择偶关系
    一步步教你怎样自己主动部署博客
    HTML5的新特性
    DataTables Table plug-in for jQuery
  • 原文地址:https://www.cnblogs.com/chenyang920/p/4850144.html
Copyright © 2011-2022 走看看