import tensorflow as tf import numpy as np from tensorflow.keras import datasets, layers, optimizers # 加载手写数字数据 mnist = tf.keras.datasets.mnist (train_x, train_y), (test_x, test_y) = mnist.load_data() xs = tf.convert_to_tensor(train_x, dtype=tf.float32)/255 # 除255将像素点值变为0-1的值 ys = tf.convert_to_tensor(train_y.reshape(-1, 1), dtype=tf.float32) db = tf.data.Dataset.from_tensor_slices((xs, ys)).batch(200) # 将标记值和样本封装为元组,且每次以200个样本作为求梯度整体 # 设置超参 iter = 100 learn_rate = 0.01 # 定义模型和优化器 model = tf.keras.Sequential([ layers.Dense(512, activation='relu'), layers.Dense(256, activation='relu'), # 全连接 layers.Dense(10) ]) optimizer = optimizers.SGD(learning_rate=learn_rate) # 优化器 # 迭代代码 for i in range(iter): print('i:',i) for step,(x,y) in enumerate(db): # 对每个batch样本做梯度计算 # 将标记值转化为one-hot编码 y_hot = np.zeros((y.shape[0], 10)) for row_index in range(y.shape[0]): # print('这是i:{}, step:{} :'.format(i,step)) y_hot[row_index][int(y[row_index].numpy()[0])] = 1 with tf.GradientTape() as tape: x = tf.reshape(x,(-1,28*28)) # 将28*28展开为784 out = model(x) loss = tf.reduce_mean(tf.square(out-y_hot)) grads = tape.gradient(loss,model.trainable_variables) # 求梯度 optimizer.apply_gradients(zip(grads,model.trainable_variables)) # 优化器进行参数优化 if step % 100 == 0: print('i:{} ,step:{} ,loss:{}'.format(i, step,loss.numpy())) # 求准确率 acc = tf.equal(tf.argmax(out,axis=1),tf.argmax(y_hot,axis=1)) acc = tf.cast(acc,tf.int8) acc = tf.reduce_mean(tf.cast(acc,tf.float32)) print('acc:',acc.numpy())