题意:给定一个数 n,和一个集合 m,问你小于的 n的所有正数能整除 m的任意一个的数目。
析:简单容斥,就是 1 个数的倍数 - 2个数的最小公倍数 + 3个数的最小公倍数 + ...(-1)^(n+1) * n个数的最小公倍数。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10 + 10;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int a[maxn];
int lcm(int a, int b){
return a * (b / gcd(a, b));
}
int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 0; i < m; ++i) scanf("%d", a+i);
int all = 1<<m;
int ans = 0;
--n;
for(int i = 1; i < all; ++i){
int cnt = 0, l = 1;
for(int j = 0; j < m; ++j) if(i&(1<<j)){
++cnt;
l = lcm(l, a[j]);
}
if(l == 0) continue;
ans += (cnt&1) ? n / l : - n / l;
}
printf("%d
", ans);
}
return 0;
}