题意:给定一个数 n,和一个集合 m,问你小于的 n的所有正数能整除 m的任意一个的数目。
析:简单容斥,就是 1 个数的倍数 - 2个数的最小公倍数 + 3个数的最小公倍数 + ...(-1)^(n+1) * n个数的最小公倍数。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 10 + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int lcm(int a, int b){ return a * (b / gcd(a, b)); } int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 0; i < m; ++i) scanf("%d", a+i); int all = 1<<m; int ans = 0; --n; for(int i = 1; i < all; ++i){ int cnt = 0, l = 1; for(int j = 0; j < m; ++j) if(i&(1<<j)){ ++cnt; l = lcm(l, a[j]); } if(l == 0) continue; ans += (cnt&1) ? n / l : - n / l; } printf("%d ", ans); } return 0; }