zoukankan      html  css  js  c++  java
  • A Game

    A Game

    时间限制:10000ms
    单点时限:1000ms
    内存限制:256MB

    描述

    Little Hi and Little Ho are playing a game. There is an integer array in front of them. They take turns (Little Ho goes first) to select a number from either the beginning or the end of the array. The number will be added to the selecter's score and then be removed from the array.

    Given the array what is the maximum score Little Ho can get? Note that Little Hi is smart and he always uses the optimal strategy. 

    输入

    The first line contains an integer N denoting the length of the array. (1 ≤ N ≤ 1000)

    The second line contains N integers A1A2, ... AN, denoting the array. (-1000 ≤ Ai ≤ 1000)

    输出

    Output the maximum score Little Ho can get.

    样例输入
    4
    -1 0 100 2
    样例输出
    99
    分析:枚举区间长度和起点,动态规划
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <list>
    #include <ext/rope>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
    #define vi vector<int>
    #define pii pair<int,int>
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    const int maxn=1e3+10;
    const int dis[][2]={0,1,-1,0,0,-1,1,0};
    using namespace std;
    using namespace __gnu_cxx;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    int n,m,dp[maxn][maxn],a[maxn],sum[maxn];
    int main()
    {
        int i,j,k,t;
        scanf("%d",&n);
        rep(i,1,n)scanf("%d",&a[i]),dp[i][1]=a[i],sum[i]=sum[i-1]+a[i];
        rep(i,2,n)
        {
            for(j=1;j+i-1<=n;j++)
            {
                dp[j][i]=max(sum[j+i-1]-sum[j-1]-dp[j][i-1],sum[j+i-1]-sum[j-1]-dp[j+1][i-1]);
            }
        }
        printf("%d
    ",dp[1][n]);
        //system("pause");
        return 0;
    }
     
  • 相关阅读:
    框架比较
    框架整理
    bootstrap-table中get请求携带的参数
    0514任务思路
    两台电脑对码云上面的项目进行迭代
    项目问题
    vue 中发送axios请求,解决跨域问题(没有config文件)
    正则表达式(未完待续)
    【转载】深入理解Linux文件系统
    浅谈IO优化
  • 原文地址:https://www.cnblogs.com/dyzll/p/5666104.html
Copyright © 2011-2022 走看看