zoukankan      html  css  js  c++  java
  • 分享

     

    转载自:伯乐在线 - iPytLab,原文链接,侵删

     

    机器学习涉及到的方面非常多。当我开始准备复习这些内容的时候,我找到了许多不同的”速查表”, 这些速查表针对某一主题都罗列出了所有我需要知道的知识重点。最终我编译了超过 20 份机器学习相关的速查表,其中一些是我经常用到的而且我相信其他人也会从中受益。本文整理了我在网络上找到的 27 个速查表,我认为比较好。如果我有遗漏,欢迎补充。

     

    如今机器学习领域的发展相当迅速,我可以想象出来这些资源将会很快过时,但是至少在当前,在2017年6月1日,他们都是相当流行的。

     

    如果你们像我一样想要一次性批量下载所有资源,我我已经将 27 个速查表整理打包好了:https://pan.baidu.com/s/1mi0viGS

     

    如果你喜欢本文,记得给我在下面点个 zan 哦。

     

    机器学习

     

    这里我从一些和机器学习算法相关的流程图和表格中选择了我认为最全面的几个并在下面罗列出来。

     

    Neural Network Architectures

     

    链接: http://www.asimovinstitute.org/neural-network-zoo/


     

    The Neural Network Zoo

     

    Microsoft Azure Algorithm Flowchart

     

    链接: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

     

     

    Machine learning algorithm cheat sheet for Microsoft Azure Machine Learning Studio

     

    SAS Algorithm Flowchart

     

    链接: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

     

     

    SAS: Which machine learning algorithm should I use?

     

    Algorithm Summary

     

    链接: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

     

     

    A Tour of Machine Learning Algorithms

     


    Which are the best known machine learning algorithms?

     

    Algorithm Pro/Con

     

    链接: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

     


    Python

     

    网上在线的Python资源可以说是相当的多。在这一部分,我挑选了我遇到的几个最好的速查表呈献给大家。

     

    ML算法

     

    链接: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/

     

     

    Python基础

     

    链接: http://datasciencefree.com/python.pdf

     

     

    链接: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA

     

     

    Numpy

     

    链接: https://www.dataquest.io/blog/numpy-cheat-sheet/

     

     

    链接: http://datasciencefree.com/numpy.pdf

     

     

    链接: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE

     

     

    链接: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb

     

     

    Pandas

     

    链接: http://datasciencefree.com/pandas.pdf

     

     

    链接: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U

     

     

    链接: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb

     

     

    Matplotlib

     

    链接: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet

     

     

    链接: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb

     

     

    Scikit Learn

     

    链接: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk

     

     

    链接: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html

     

     

    链接: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb

     

     

    Tensorflow

     

    链接: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

     

     

    Pytorch

     

    链接: https://github.com/bfortuner/pytorch-cheatsheet

     

    数学

     

    如果你想真正的理解机器学习,你需要有扎实的统计学(尤其是概率论), 线性代数以及微积分基础。我在上大学的时候辅修了数学专业,但是我肯定还是需要对这些数学知识进行复习。如果你想理解常用机器学习算法背后的数学原理,那么下面的这些速查表将会是你需要的。

     

    概率论

     

    链接: http://www.wzchen.com/s/probability_cheatsheet.pdf

     

     

    线性代数

     

    链接: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf

     

     

    统计学

     

    链接: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf

     

     

    微积分

     

    链接: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

     

     

    打包下载:https://pan.baidu.com/s/1mi0viGS

     
  • 相关阅读:
    SQL in查询报告类型转换失败的3种解决办法
    JS获取TextArea和Input的同步值
    Java接口修饰符详解
    Lua协程的一个例子
    windows命令查看端口占用情况
    重装Zend Studio后如何恢复之前的设置
    现代软件工程第二周的作业
    现代软件工程第一周第一次作业
    现代软件工程第一周作业
    flex属性
  • 原文地址:https://www.cnblogs.com/gxcdream/p/7597967.html
Copyright © 2011-2022 走看看