zoukankan      html  css  js  c++  java
  • 692. Top K Frequent Words

    Given a non-empty list of words, return the k most frequent elements.

    Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.

    Example 1:

    Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
    Output: ["i", "love"]
    Explanation: "i" and "love" are the two most frequent words.
        Note that "i" comes before "love" due to a lower alphabetical order.
    

    Example 2:

    Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
    Output: ["the", "is", "sunny", "day"]
    Explanation: "the", "is", "sunny" and "day" are the four most frequent words,
        with the number of occurrence being 4, 3, 2 and 1 respectively.
    

    Note:

    1. You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
    2. Input words contain only lowercase letters.

    Follow up:

    1. Try to solve it in O(n log k) time and O(n) extra space.

    Approach #1: C++.[unordered_map]

    class Solution {
    public:
        vector<string> topKFrequent(vector<string>& words, int k) {
            if (words.empty()) return {};
            unordered_map<string, int> m;
            for (string word : words) {
                m[word]++;
            }
            vector<pair<string, int>> temp(m.begin(), m.end());
            sort(temp.begin(), temp.end(), cmp);
            vector<string> ans;
            for (int i = 0; i < k; ++i) {
                ans.push_back(temp[i].first);
            }
            return ans;
        }
        
    private:
        static bool cmp(pair<string, int> a, pair<string, int> b) {
            if (a.second == b.second) return a.first < b.first;
            return a.second > b.second;
        }
    };
    

      

    Approach #2: Java. [heap]

    class Solution {
        public List<String> topKFrequent(String[] words, int k) {
            Map<String, Integer> count = new HashMap();
            for (String word : words) {
                count.put(word, count.getOrDefault(word, 0) + 1);
            }
            PriorityQueue<String> heap = new PriorityQueue<String>(
                (w1, w2)->count.get(w1).equals(count.get(w2)) ?
                w2.compareTo(w1) : count.get(w1) - count.get(w2) );
            
            for (String word : count.keySet()) {
                heap.offer(word);
                if (heap.size() > k) heap.poll();
            }
            
            List<String> ans = new ArrayList();
            while (!heap.isEmpty()) ans.add(heap.poll());
            Collections.reverse(ans);
            return ans;
        }
    }
    

      

    Approach #3: Python.

    import collections
    import heapq
    class Solution:
        # Time Complexity = O(n + nlogk)
        # Space Complexity = O(n)
        def topKFrequent(self, words, k):
            count = collections.Counter(words)
            heap = []
            for key, value in count.items():
                heapq.heappush(heap, Word(value, key))
                if len(heap) > k:
                    heapq.heappop(heap)
            res = []
            for _ in range(k):
                res.append(heapq.heappop(heap).word)
            return res[::-1]
    
    class Word:
        def __init__(self, freq, word):
            self.freq = freq
            self.word = word
    
        def __lt__(self, other):
            if self.freq == other.freq:
                return self.word > other.word
            return self.freq < other.freq
    
        def __eq__(self, other):
            return self.freq == other.freq and self.word == other.word
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Python基础知识之4——三大控制结构
    Python基础知识之3——运算符与表达式
    Python基础知识之2——字典
    常用的数据分析方法汇总
    关于Windows10企业版的激活方法
    插补法图像压缩
    MouseHover-鼠标停留伴随内容提示
    移动端viewport模版
    Ajax的跨域请求
    Json用途
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10158396.html
Copyright © 2011-2022 走看看