zoukankan      html  css  js  c++  java
  • 692. Top K Frequent Words

    Given a non-empty list of words, return the k most frequent elements.

    Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.

    Example 1:

    Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
    Output: ["i", "love"]
    Explanation: "i" and "love" are the two most frequent words.
        Note that "i" comes before "love" due to a lower alphabetical order.
    

    Example 2:

    Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
    Output: ["the", "is", "sunny", "day"]
    Explanation: "the", "is", "sunny" and "day" are the four most frequent words,
        with the number of occurrence being 4, 3, 2 and 1 respectively.
    

    Note:

    1. You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
    2. Input words contain only lowercase letters.

    Follow up:

    1. Try to solve it in O(n log k) time and O(n) extra space.

    Approach #1: C++.[unordered_map]

    class Solution {
    public:
        vector<string> topKFrequent(vector<string>& words, int k) {
            if (words.empty()) return {};
            unordered_map<string, int> m;
            for (string word : words) {
                m[word]++;
            }
            vector<pair<string, int>> temp(m.begin(), m.end());
            sort(temp.begin(), temp.end(), cmp);
            vector<string> ans;
            for (int i = 0; i < k; ++i) {
                ans.push_back(temp[i].first);
            }
            return ans;
        }
        
    private:
        static bool cmp(pair<string, int> a, pair<string, int> b) {
            if (a.second == b.second) return a.first < b.first;
            return a.second > b.second;
        }
    };
    

      

    Approach #2: Java. [heap]

    class Solution {
        public List<String> topKFrequent(String[] words, int k) {
            Map<String, Integer> count = new HashMap();
            for (String word : words) {
                count.put(word, count.getOrDefault(word, 0) + 1);
            }
            PriorityQueue<String> heap = new PriorityQueue<String>(
                (w1, w2)->count.get(w1).equals(count.get(w2)) ?
                w2.compareTo(w1) : count.get(w1) - count.get(w2) );
            
            for (String word : count.keySet()) {
                heap.offer(word);
                if (heap.size() > k) heap.poll();
            }
            
            List<String> ans = new ArrayList();
            while (!heap.isEmpty()) ans.add(heap.poll());
            Collections.reverse(ans);
            return ans;
        }
    }
    

      

    Approach #3: Python.

    import collections
    import heapq
    class Solution:
        # Time Complexity = O(n + nlogk)
        # Space Complexity = O(n)
        def topKFrequent(self, words, k):
            count = collections.Counter(words)
            heap = []
            for key, value in count.items():
                heapq.heappush(heap, Word(value, key))
                if len(heap) > k:
                    heapq.heappop(heap)
            res = []
            for _ in range(k):
                res.append(heapq.heappop(heap).word)
            return res[::-1]
    
    class Word:
        def __init__(self, freq, word):
            self.freq = freq
            self.word = word
    
        def __lt__(self, other):
            if self.freq == other.freq:
                return self.word > other.word
            return self.freq < other.freq
    
        def __eq__(self, other):
            return self.freq == other.freq and self.word == other.word
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    简单编码解码学习
    如何把SQLServer数据库从高版本降级到低版本?
    快速读取csv平面文件,并导入数据库,简单小工具
    数据流处理数据
    配置文件的几种读取方式
    常用webservice接口地址
    路径转换
    Tornado与JS交互工作
    测试技术发展之我见
    移动测试人员的未来:测试开发技术的融合
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10158396.html
Copyright © 2011-2022 走看看