zoukankan      html  css  js  c++  java
  • [POJ 1328] Radar Installation

    Radar Installation
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 59563   Accepted: 13430

    Description

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

    We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
     
    Figure A Sample Input of Radar Installations


    Input

    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

    The input is terminated by a line containing pair of zeros 

    Output

    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

    Sample Input

    3 2
    1 2
    -3 1
    2 1
    
    1 2
    0 2
    
    0 0
    

    Sample Output

    Case 1: 2
    Case 2: 1
     
    区间选点问题
    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    using namespace std;
    #define N 1010
    
    struct P
    {
        double x1,x2;
        bool operator < (const P &t)const
        {
            if(x2!=t.x2) return x2<t.x2;
            return x1>t.x1;
        }
    }p[N];
    
    int main()
    {
        int n,r;
        int iCase=1;
        int end_flag;
        while(scanf("%d%d",&n,&r),n||r)
        {
            end_flag=0;
            for(int i=1;i<=n;i++)
            {
                double x,y;
                scanf("%lf%lf",&x,&y);
                if(y>r) end_flag=1;
                p[i].x1=x-sqrt(r*r-y*y);
                p[i].x2=x+sqrt(r*r-y*y);
            }
            printf("Case %d: ",iCase++);
            if(end_flag)
            {
                printf("-1
    ");
                continue;
            }
            sort(p+1,p+n+1);
            int cnt=1;
            double tmp=p[1].x2;
            for(int i=2;i<=n;i++)
            {
                if(p[i].x1>tmp)
                {
                    cnt++;
                    tmp=p[i].x2;
                }
            }
            printf("%d
    ",cnt);
        }
        return 0;
    }
  • 相关阅读:
    高斯拉普拉斯算子(Laplace of Gaussian)
    Windows的TCP协议参数
    poj 1182食物链(并查集)
    linux网络体系架构
    谈谈对于企业级系统架构的理解
    Redis源码解析(1)——源码目录介绍
    在多台服务器上简单实现Redis的数据主从复制
    利用Nginx做负载均衡
    C#中的BackgroundWorker控件
    C#中的线程(四)高级话题
  • 原文地址:https://www.cnblogs.com/hate13/p/4548059.html
Copyright © 2011-2022 走看看