zoukankan      html  css  js  c++  java
  • HDU

    Samwell Tarly is learning to draw a magical matrix to protect himself from the White Walkers.
    the magical matrix is a matrix with n rows and m columns, and every single block should be painted either black or white.
    Sam wants to know how many ways to paint the matrix, satisfied that the final matrix has at least A rows, B columns was painted completely black. Cause the answer might be too big, you only need to output it modulo 998244353.

    InputThere might be multiple test cases, no more than 5. You need to read till the end of input.
    For each test case, a line containing four integers n,m,A,B.
    1n,m,A,B3000 1≤n,m,A,B≤3000 .
    OutputFor each test case, output a line containing the answer modulo 998244353.
    Sample Input

    3 4 1 2

    Sample Output

    169

    题意:给N*M的空白格子染色,求至少x行,至少y列被染色的方案数。

    思路:不会,占位。

    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    const int maxn = 3001;
    const int MOD = 998244353;
    int n, m, A, B, ans;
    int C[maxn][maxn], two[maxn * maxn];
    int fa[maxn], fb[maxn];
    
    void Init() {
        for(int i = 0; i < maxn; ++i) {
            for(int j = 0; j <= i; ++j) {
                if(j == i || j == 0) {
                    C[i][j] = 1;
                } else {
                    C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
                    if(C[i][j] >= MOD) {
                        C[i][j] -= MOD;
                    }
                }
            }
        }
        two[0] = 1;
        for(int i = 1; i < maxn * maxn; ++i) {
            two[i] = two[i - 1] * 2;
            if(two[i] >= MOD) {
                two[i] -= MOD;
            }
        }
    }
    
    int main() {
        Init();
        while(~scanf("%d%d%d%d", &n, &m, &A, &B)) {
            ans = 0;
            for(int i = A; i <= n; ++i) {
                fa[i] = 0;
                for(int j = A; j < i; ++j) {
                    fa[i] = (fa[i] + (LL)C[i][j] * fa[j]) % MOD;
                }
                fa[i] = 1 - fa[i];
                if(fa[i] < 0) {
                    fa[i] += MOD;
                }
            }
            for(int i = B; i <= m; ++i) {
                fb[i] = 0;
                for(int j = B; j < i; ++j) {
                    fb[i] = (fb[i] + (LL)C[i][j] * fb[j]) % MOD;
                }
                fb[i] = 1 - fb[i];
                if(fb[i] < 0) {
                    fb[i] += MOD;
                }
            }
            for(int i = A; i <= n; ++i) {
                LL tmp = (LL)fa[i] * C[n][i] % MOD;
                for(int j = B; j <= m; ++j) {
                    ans = (ans + ((tmp * fb[j] % MOD) * C[m][j] % MOD) * two[(n - i) * (m - j)] % MOD) % MOD;
                }
            }
            printf("%d
    ", ans);
        }
    
        return 0;
    }
    View Code
  • 相关阅读:
    ios入门笔记(创建隐式首选项,实现系统设置,实现文件系统存储)
    ios开发(表视图)
    Android上使用OpenglES2.0遇到的一点问题
    Android平台对H264视频硬解码
    Java GC机制和对象Finalize方法的一点总结
    JVM GC之一找出不可达对象并回收
    docker 使用Data Volume 共享文件
    sscanf函数用法详解
    va_start和va_end使用详解
    NDK 的helloworld步奏
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9851697.html
Copyright © 2011-2022 走看看