zoukankan      html  css  js  c++  java
  • HDU

    Samwell Tarly is learning to draw a magical matrix to protect himself from the White Walkers.
    the magical matrix is a matrix with n rows and m columns, and every single block should be painted either black or white.
    Sam wants to know how many ways to paint the matrix, satisfied that the final matrix has at least A rows, B columns was painted completely black. Cause the answer might be too big, you only need to output it modulo 998244353.

    InputThere might be multiple test cases, no more than 5. You need to read till the end of input.
    For each test case, a line containing four integers n,m,A,B.
    1n,m,A,B3000 1≤n,m,A,B≤3000 .
    OutputFor each test case, output a line containing the answer modulo 998244353.
    Sample Input

    3 4 1 2

    Sample Output

    169

    题意:给N*M的空白格子染色,求至少x行,至少y列被染色的方案数。

    思路:不会,占位。

    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    const int maxn = 3001;
    const int MOD = 998244353;
    int n, m, A, B, ans;
    int C[maxn][maxn], two[maxn * maxn];
    int fa[maxn], fb[maxn];
    
    void Init() {
        for(int i = 0; i < maxn; ++i) {
            for(int j = 0; j <= i; ++j) {
                if(j == i || j == 0) {
                    C[i][j] = 1;
                } else {
                    C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
                    if(C[i][j] >= MOD) {
                        C[i][j] -= MOD;
                    }
                }
            }
        }
        two[0] = 1;
        for(int i = 1; i < maxn * maxn; ++i) {
            two[i] = two[i - 1] * 2;
            if(two[i] >= MOD) {
                two[i] -= MOD;
            }
        }
    }
    
    int main() {
        Init();
        while(~scanf("%d%d%d%d", &n, &m, &A, &B)) {
            ans = 0;
            for(int i = A; i <= n; ++i) {
                fa[i] = 0;
                for(int j = A; j < i; ++j) {
                    fa[i] = (fa[i] + (LL)C[i][j] * fa[j]) % MOD;
                }
                fa[i] = 1 - fa[i];
                if(fa[i] < 0) {
                    fa[i] += MOD;
                }
            }
            for(int i = B; i <= m; ++i) {
                fb[i] = 0;
                for(int j = B; j < i; ++j) {
                    fb[i] = (fb[i] + (LL)C[i][j] * fb[j]) % MOD;
                }
                fb[i] = 1 - fb[i];
                if(fb[i] < 0) {
                    fb[i] += MOD;
                }
            }
            for(int i = A; i <= n; ++i) {
                LL tmp = (LL)fa[i] * C[n][i] % MOD;
                for(int j = B; j <= m; ++j) {
                    ans = (ans + ((tmp * fb[j] % MOD) * C[m][j] % MOD) * two[(n - i) * (m - j)] % MOD) % MOD;
                }
            }
            printf("%d
    ", ans);
        }
    
        return 0;
    }
    View Code
  • 相关阅读:
    2017/09/02笔记:ps
    207/08/3学习笔记:pc端网站如何实现移动端适配知识点
    2017/0828xueix笔记:图像替代文本&css绘制的图形
    20170824:面试题笔记
    目前比较全的CSS重设(reset)方法总结
    学习笔记:css3实现多行文字溢出显示省略号&display:box;
    SVG圆形<circle> 标签
    k8s节点分配nodeSelector, Affinity和Anti-Affinity 亲和性和反亲和性
    kubernetes网络介绍
    centos6.7 安装docker
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9851697.html
Copyright © 2011-2022 走看看