zoukankan      html  css  js  c++  java
  • 实验二 K-近邻算法及应用

    作业信息

    博客班级 计算机18级
    作业要求 实验二
    学号 3180701128

    实验目的

    1. 理解K-近邻算法原理,能实现算法K近邻算法;
    2. 掌握常见的距离度量方法;
    3. 掌握K近邻树实现算法;
    4. 针对特定应用场景及数据,能应用K近邻解决实际问题。

    实验內容

    1. 实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
    2. 实现K近邻树算法;
    3. 针对iris数据集,应用sklearn的K近邻算法进行类别预测。
    4. 针对iris数据集,编制程序使用K近邻树进行类别预测。

    实验报告要求

    1. 对照实验内容,撰写实验过程、算法及测试结果;
    2. 代码规范化:命名规则、注释;
    3. 分析核心算法的复杂度;
    4. 查阅文献,讨论K近邻的优缺点;
    5. 举例说明K近邻的应用场景。

    实验代码及结果

    距离度量

    • p = 1 曼哈顿距离
    • p = 2 欧氏距离
    • p = inf 闵式距离minkowski_distance
    import math
    from itertools import combinations
    def L(x, y, p=2):
        # x1 = [1, 1], x2 = [5,1]
        if len(x) == len(y) and len(x) > 1:
            sum = 0
            for i in range(len(x)):
                sum += math.pow(abs(x[i] - y[i]), p)
                return math.pow(sum, 1/p)
        else:
            return 0
    x1 = [1, 1]
    x2 = [5, 1]
    x3 = [4, 4]
    # x1, x2
    for i in range(1, 5):
        r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
        print(min(zip(r.values(), r.keys())))
    
    结果

    K近邻树算法

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    # data
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    # data = np.array(df.iloc[:100, [0, 1, -1]])、
    df
    
    结果

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    
    结果

    data = np.array(df.iloc[:100, [0, 1, -1]])
    X, y = data[:,:-1], data[:,-1]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    class KNN:
        def __init__(self, X_train, y_train, n_neighbors=3, p=2):
            #parameter: n_neighbors 临近点个数
            #parameter: p 距离度量
            self.n = n_neighbors
            self.p = p
            self.X_train = X_train
            self.y_train = y_train
    
        def predict(self, X):
            # 取出n个点
            knn_list = []
            for i in range(self.n):
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                knn_list.append((dist, self.y_train[i]))
    
            for i in range(self.n, len(self.X_train)):
                max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                if knn_list[max_index][0] > dist:
                    knn_list[max_index] = (dist, self.y_train[i])
    
            # 统计
            knn = [k[-1] for k in knn_list]
            count_pairs = Counter(knn)
            max_count = sorted(count_pairs, key=lambda x:x)[-1]
            return max_count
    
        def score(self, X_test, y_test):
            right_count = 0
            n = 10
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right_count += 1
            return right_count / len(X_test)
    clf = KNN(X_train, y_train)
    clf.score(X_test, y_test)
    
    结果

    test_point = [6.0, 3.0]
    print('Test Point: {}'.format(clf.predict(test_point)))
    
    结果

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    
    结果

    scikitlearn

    • n_neighbors: 临近点个数
    • p: 距离度量
    • algorithm: 近邻算法,可选{'auto', 'ball_tree', 'kd_tree', 'brute'}
    • weights: 确定近邻的权重
    from sklearn.neighbors import KNeighborsClassifier
    clf_sk = KNeighborsClassifier()
    clf_sk.fit(X_train, y_train)
    
    结果

    clf_sk.score(X_test, y_test)
    
    结果

    针对iris数据集,编制程序使用K近邻树进行类别预测

    # kd-tree每个结点中主要包含的数据结构如下
    class KdNode(object):
        def __init__(self, dom_elt, split, left, right):
            self.dom_elt = dom_elt  # k维向量节点(k维空间中的一个样本点)
            self.split = split  # 整数(进行分割维度的序号)
            self.left = left  # 该结点分割超平面左子空间构成的kd-tree
            self.right = right  # 该结点分割超平面右子空间构成的kd-tree
    
    
    class KdTree(object):
        def __init__(self, data):
            k = len(data[0])  # 数据维度
    
            def CreateNode(split, data_set):  # 按第split维划分数据集exset创建KdNode
                if not data_set:  # 数据集为空
                    return None
    
                # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
                # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
                # data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
                data_set.sort(key=lambda x: x[split])
                split_pos = len(data_set) // 2  # //为Python中的整数除法
                median = data_set[split_pos]  # 中位数分割点 
                split_next = (split + 1) % k  # cycle coordinates
    
                # 递归的创建kd树
                return KdNode(median, split,
                    CreateNode(split_next, data_set[:split_pos]),  # 创建左子树
                    CreateNode(split_next, data_set[split_pos + 1:]))  # 创建右子树
    
            self.root = CreateNode(0, data)  # 从第0维分量开始构建kd树,返回根节点
    
    
    # KDTree的前序遍历
    def preorder(root):
        print(root.dom_elt)
        if root.left:  # 节点不为空
            preorder(root.left)
        if root.right:
            preorder(root.right)
    
    
    # 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
    from math import sqrt
    from collections import namedtuple
    
    # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
    result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
    
    
    def find_nearest(tree, point):
        k = len(point)  # 数据维度
    
        def travel(kd_node, target, max_dist):
            if kd_node is None:
                return result([0] * k, float("inf"), 0)  # python中用float("inf")和float("-inf")表示正负
    
            nodes_visited = 1
    
            s = kd_node.split  # 进行分割的维度
            pivot = kd_node.dom_elt  # 进行分割的“轴”
    
            if target[s] <= pivot[s]:  # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
                nearer_node = kd_node.left  # 下一个访问节点为左子树根节点
                further_node = kd_node.right  # 同时记录下右子树
            else:  # 目标离右子树更近
                nearer_node = kd_node.right  # 下一个访问节点为右子树根节点
                further_node = kd_node.left
            temp1 = travel(nearer_node, target, max_dist)  # 进行遍历找到包含目标点的区域
    
            nearest = temp1.nearest_point  # 以此叶结点作为“当前最近点”
            dist = temp1.nearest_dist  # 更新最近距离
    
            nodes_visited += temp1.nodes_visited
            if dist < max_dist:
                max_dist = dist  # 最近点将在以目标点为球心,max_dist为半径的超球体内
    
            temp_dist = abs(pivot[s] - target[s])  # 第s维上目标点与分割超平面的距离
            if max_dist < temp_dist:  # 判断超球体是否与超平面相交
                return result(nearest, dist, nodes_visited)  # 不相交则可以直接返回,不用继续判断
    
            # ---------------------------------------------------------------------- 
            # 计算目标点与分割点的欧氏距离 
            temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
    
            if temp_dist < dist:  # 如果“更近”
                nearest = pivot  # 更新最近点
                dist = temp_dist  # 更新最近距离
                max_dist = dist  # 更新超球体半径
    
            # 检查另一个子结点对应的区域是否有更近的点
            temp2 = travel(further_node, target, max_dist)
    
            nodes_visited += temp2.nodes_visited
            if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
                nearest = temp2.nearest_point  # 更新最近点
                dist = temp2.nearest_dist  # 更新最近距离
            return result(nearest, dist, nodes_visited)
        return travel(tree.root, point, float("inf"))  # 从根节点开始递归
    
    data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd = KdTree(data)
    preorder(kd.root)
    
    结果

    from time import clock
    from random import random
    # 产生一个k维随机向量,每维分量值在0~1之间
    def random_point(k):
        return [random() for _ in range(k)]
    # 产生n个k维随机向量
    def random_points(k, n):
        return [random_point(k) for _ in range(n)] 
    ret = find_nearest(kd, [3,4.5])
    print (ret)
    
    结果

    N = 400000
    t0 = clock()
    kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
    ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
    t1 = clock()
    print ("time: ",t1-t0, "s")
    print (ret2)
    
    结果

    K近邻的优缺点

    算法优点:

    (1)简单,易于理解,易于实现,无需估计参数。

        (2)训练时间为零。它没有显示的训练,不像其它有监督的算法会用训练集train一个模型(也就是拟合一个函数),然后验证集或测试集用该模型分类。KNN只是把样本保存起来,收到测试数据时再处理,所以KNN训练时间为零。

        (3)KNN可以处理分类问题,同时天然可以处理多分类问题,适合对稀有事件进行分类。

        (4)特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好。

        (5)KNN还可以处理回归问题,也就是预测。

        (6)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。

    算法缺点:

    (1)计算量太大,尤其是特征数非常多的时候。每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最近邻点。

        (2)可理解性差,无法给出像决策树那样的规则。

        (3)是慵懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢。

        (4)样本不平衡的时候,对稀有类别的预测准确率低。当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。

        (5)对训练数据依赖度特别大,对训练数据的容错性太差。如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确。

    K近邻算法的应用场景

    需要一个特别容易解释的模型的时候。
    比如需要向用户解释原因的推荐算法。

    实验小结

    通过此次实验我了解了K近邻算法及其思路,该方法的思路是:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别。
    所谓k近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例。

  • 相关阅读:
    初窥AndroidPlot(一)
    Android Studio安装、配置
    Android SDK Android NDK Android Studio 官方下载地址及方式
    学习Android图表绘制
    ActionBar研究(二)
    获取Android版本信息和程序版本号
    Android手机获取通话记录和短信记录
    Android开发之监听或获取手机短信内容【转】
    android 几种发送短信的方法【转】
    android开源框架android-async-http
  • 原文地址:https://www.cnblogs.com/hudamao/p/14797315.html
Copyright © 2011-2022 走看看