zoukankan      html  css  js  c++  java
  • 影评分析第2篇 《博人传-火影忍者新时代》透过2W条评论看动漫

    影评分析第2篇写在前面

    日本电视动画《BORUTO -火影新世代》(中国大陆译名《博人传:火影忍者新时代》)改编自岸本齐史原作并监修、池本干雄编绘、小太刀右京编剧的同名漫画,是《火影忍者》系列的续篇,讲述原作故事完结后漩涡鸣人之子漩涡博人的冒险故事。动画的后续剧情将对岸本齐史负责脚本的剧场版《火影忍者剧场版:博人传》作出补充 。

    动画与前作《火影忍者》《火影忍者疾风传》一样由Studio Pierrot(小丑社)负责制作。
    时间是:2017年4月5日起每周三16:55在东京电视台系列首播

    在这里插入图片描述

    以上内容,是我从百度百科抄袭过来的~哈哈哈哈,咱主要做的是数据分析,数据的爬取,去我的爬虫系列的博客里面去看吧,里面有相关的教程。

    影评分析第2篇数据分析

    作为评论的数据,咱保存了这些数据留着备用

        author # 作者
        content # 评论内容
        ctime = # 评论时间
        disliked # 不喜欢人数
        liked # 喜欢
        likes # 奇怪???
        score # 打分
        user_season # 在第几集打的分数
    

    1.清洗数据

    最核心的步骤来了,在分析数据以前,我们需要对数据做一些处理,空值判断,时间格式修改等内容,这部分可能会根据实际的需求发生一些变化。

    import numpy as np
    import pandas as pd
    import datetime
    
    
    # 数据读取
    def read_csv():
        file = pd.read_csv("./bore.csv",header=None,names=["author","content","ctime","disliked","liked","likes","score","user_season"])
        return file
    
    # 数据清洗
    def clear_data():
        df = read_csv()
        #print(any(df.duplicated())) # 判断数据是否有重复
        #print(df.head())
        #print(df.isnull().any())  # 判断是否有空列
        #print(df[df.isnull().values==True])   # 检测空值 
        data = df.fillna(0)  # 空值填充 
    
        # 时间处理
        def get_localtime(data):
            time =  datetime.datetime.fromtimestamp(data['ctime']).strftime("%Y-%m-%d")
            return pd.to_datetime(time)
        df["ctime"]=df.apply(get_localtime,axis = 1)  # apply 的使用 
        
        return df
    
    # 数据分析1
    def analsis1(data):
        print(data["author"].describe())
    
    if __name__ == '__main__':
        df = clear_data()
        analsis1(df)
    
    

    2.评论最多的人?

    看一下谁是这部动漫评论最多的人,这个代码非常简单,参考下面代码即可。.describe() 函数

    def analsis1(data):
        print(data["author"].describe())
    
    count     18535  # author总数
    unique    18535 # 去除重复之后的总数
    top        你的盛世   
    freq          1
    Name: author, dtype: object
    

    很神奇,竟然没有人评论次数超过2 这个结论只能表示,B站允许视频评论一次?!机制的我想去测试一下,啪啪啪,打脸回来了,我竟然没有权限。

    ※你没有权限※

    3.评论最多的人?

    数据中,有分数的排布,那么我们看一下打分的柱状图吧!数据显示的1星和5星的比较多,两级分化比较严重。
    在这里插入图片描述

    为了确保中文显示正常,需要首先配置一下默认字体并且设置一下 matplotlib的样式

    import numpy as np
    import pandas as pd
    import datetime
    import matplotlib.pyplot as plt
    import matplotlib.style as psl
    
    psl.use('seaborn-darkgrid')
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus']=False
    
    1. 分组统计score打分,使用groupby(by=“字段名称”).size() # 获取数量
    2. reset_index(drop=True) # 重置索引
    3. plt.bar #用来生成柱状图
    4. plt.text() # 生成文字
    def analsis2(data):
        # 文章打分的柱状图
        score = data["score"].groupby(data["score"]).size()
    
        score = score.reset_index(drop=True)
        x_index = np.arange(1,6).tolist()
    
        plt.bar(x_index,score.values,0.4,color="#03a9da")
        # 绘制文字
        for xx,yy in zip(x_index,score.values):
            plt.text(xx,yy+0.2,str(yy),ha="center",fontsize = 10)
    
        plt.title("用户评星图表")  # 设置标题
        plt.xlabel("评星")  # 设置x轴标识
        plt.ylabel("人数")  # 设置y轴标识
        plt.show()
    

    如果编写如下代码

    plt.barh(x_index, score.values, 0.4, color="#03a9da")  
    

    就会得到一个横向的条形柱状图。

    4. 评论时间分布

    从数据看星期二、四、六评论次数增多,很有意思的数据。
    在这里插入图片描述

    # 通过星期判断评论次数
    def analysis3(data):
        data.set_index(data["ctime"],inplace=True)
        weeks = ["星期日","星期一","星期二","星期三","星期四","星期五","星期六"]
        def get_weekday(data):
            return weeks[data["ctime"].weekday()]
        data["week"] = data.apply(get_weekday,axis=1)
        week_data = data.groupby(by="week")["author"].size()
    
        plt.bar(weeks,week_data.values,0.5,color="green")
        plt.show()
    

    5. 评论月份暴漏的部分关系

    我们看到在2018年7月份数据忽然升高,这背后到底有啥隐藏的秘密呢?我们继续往下看。!

    在这里插入图片描述

    def analysis4(data):
        data.set_index(data["ctime"], inplace=True)
        data = data.resample("M").count()["author"]  # 按照月份汇总数据
        data = data.to_period("M")  # 显示数据
        x = np.arange(0,len(data),1)
    
        fig = plt.figure(figsize=(6, 4))
        ax = fig.add_subplot(111)
    
        '''
        fig = plt.figure()
        ax2 = fig.add_subplot(212)
        '''
    
        ax.plot(x,data.values,"#03a9f4",marker="o",markersize=4)
        ax.set_xticks(x)  # 设置x轴标签为自然数序列
        ax.set_xticklabels(data.index)  # 更改x轴标签值为年份
        plt.xticks(rotation=60)  # 旋转90度,不至太拥挤
    
        plt.title('博人传评论数量变化(201709-201812)', color="#03a9f4", fontsize=12)
        plt.xlabel("月份")
        plt.ylabel('评论数量')
        plt.tight_layout()  # 自动控制空白边缘
    
    
        plt.show()
    
    

    过滤2018年7月份的数据出来,发现在2018年7月20日的时候,出现了一个评论峰值,在进行细致的分析,咱看一下数据。
    在这里插入图片描述

    看到这个数据之后,虽然我没看博人传,但是,我知道了 65集肯定好看,而且很有可能在7月20日更新的就是这1集,好奇心起来的你,或者你是一个火影迷,你可以去看看这一集~! 我翻到评论,引用了一个置顶评论

    	本集是值得国人观众特别期待的一集,因为这一话(第65集)是由国人原画师黄成希全权负责的,
    	他一个人包揽了本集的分镜/演出/作画导演等主要工作。
    	换而言之,黄成希作为中国画师获得了本集的作监资格。这在火影忍者开播16年以来是史无前例的。
    	十几年前,黄成希在火影忍者刚刚开播时,也和多数人一样仅仅只是屏幕前的看客,
    	但是这部作品对学生时代的他施加了巨大的影响,最终促使黄成希走上了成为动画画师的道路。
    	在2012年加入日本动画行业后,他如愿以偿成为了火影忍者的主力原画之一,并参与作画监督的工作。
    	除此之外他还先后加入过包括黑子的篮球、妖怪手表和刀剑神域剧场版等多部作品的制作,
    	实力得到了业内的认可,因此才最终获得了独自扛下重要打斗回的资格,如此说来也算是圆梦成功。
    	由于本集几乎是黄成希的个人秀,再加上这一话中大筒木桃式使用了漫画版而不是剧场版中的新形象,
    	因此黄成希在作画上自由发挥的空间就变得很大,这就有余地在打斗中融入太极和咏春等中国传统武术了。
    	所以大伙看到一连串的“中国功夫”也别觉得奇怪哈~
    	说起来,大筒木一族本身就有一股浓厚的道家派头,他们不仅历史悠久,文明程度远远超越这个世界的人,
    	而且全族都在种灵根,吃仙桃,修金丹,求长生不老。现在再配合一整套中国武学架子,
    	简直给人一种徐福手下三千童男童女入蓬莱求仙药的即视感...将来出一个徐福式的修仙族长也是极好的!(大误)
    
    
    	黄成希在博人传中的几段作画(可能有遗漏):
    	博人vs木叶丸
    	博人vs花火
    	博人vs鵺
    	小樱vs信
    	巳月vs尸澄真
    

    在这里插入图片描述

    def analysis5(data):
       data = data.set_index('ctime')  # 将时间作为索引
       data = data["2018-07-01":"2018-08-01"]
       child_data = data.resample("D").count()["content"]
       print(child_data.to_period("D"))
    
       data = data['2018-07-20':"2018-07-20"]
       print(data["content"])
    
    

    6. 评论最多的集数

    其实有上面的分析,我们已经知道了,65集肯定是评论最多的了,但是我们还是要用数据看一下

    def analysis6(data):
        data = data.groupby(by="user_season").size()
        data = data.sort_values(ascending=False)
        print(data.head())
    
    

    没问题,65集必看

    集数 评论数量
    65 4338
    40 985
    39 658
    66 502
    68 494

    最后打算在弄一个文字图的,后来想想下次再说,《博人传》数据和源码已经给大家写完整啦~

    一星给情怀,一星给65集

  • 相关阅读:
    SQL_Server_2005_数据类型转换函数(描述及实例)
    讨论:GUID与int自增列的问题
    SQL Server 2005无日志文件附加数据库
    优化SQL查询:如何写出高性能SQL语句
    开源项目之视频会议程序 Omnimeeting
    wzplayer player (android,windows,ios) 多核解码
    利用office2010 word2010生成目录
    利用office2010 word2010生成目录
    最近在忙活视频通话(sip)
    介绍几个在线画流程图的工具
  • 原文地址:https://www.cnblogs.com/hzcya1995/p/13311564.html
Copyright © 2011-2022 走看看