zoukankan      html  css  js  c++  java
  • Hadoop Eclipse开发环境搭建

    一、安装Eclipse

        下载Eclipse,解压安装,例如安装到/usr/local,即/usr/local/eclipse

        4.3.1版本下载地址:http://pan.baidu.com/s/1eQkpRgu

    二、在eclipse上安装hadoop插件

        1、下载hadoop插件

            下载地址:http://pan.baidu.com/s/1mgiHFok

         此zip文件包含了源码,我们使用使用编译好的jar即可,解压后,release文件夹中的hadoop.eclipse-kepler-plugin-2.2.0.jar就是编译好的插件。

       2、把插件放到eclipse/plugins目录下

        3、重启eclipse,配置Hadoop installation directory    

         如果插件安装成功,打开Windows—Preferences后,在窗口左侧会有Hadoop Map/Reduce选项,点击此选项,在窗口右侧设置Hadoop安装路径。

          

    4、配置Map/Reduce Locations

         打开Windows—Open Perspective—Other

        

        选择Map/Reduce,点击OK

        

        在右下方看到如下图所示

        

    点击Map/Reduce Location选项卡,点击右边小象图标,打开Hadoop Location配置窗口:

        输入Location Name,任意名称即可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成与core-site.xml的设置一致即可。

        

    点击"Finish"按钮,关闭窗口。

     点击左侧的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安装成功

       

          

          

        如果如下图所示表示安装失败,请检查Hadoop是否启动,以及eclipse配置是否正确。

    三、新建WordCount项目

        File—>Project,选择Map/Reduce Project,输入项目名称WordCount等。

        在WordCount项目里新建class,名称为WordCount,代码如下:

        

    复制代码
    import java.io.IOException;
    

    import java.util.StringTokenizer;

    import org.apache.hadoop.conf.Configuration;

    import org.apache.hadoop.fs.Path;

    import org.apache.hadoop.io.IntWritable;

    import org.apache.hadoop.io.Text;

    import org.apache.hadoop.mapreduce.Job;

    import org.apache.hadoop.mapreduce.Mapper;

    import org.apache.hadoop.mapreduce.Reducer;

    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

    import org.apache.hadoop.util.GenericOptionsParser;

    public class WordCount {

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{

      private final static IntWritable one = new IntWritable(1);

      private Text word = new Text();

      public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

        StringTokenizer itr = new StringTokenizer(value.toString());

          while (itr.hasMoreTokens()) {

            word.set(itr.nextToken());

            context.write(word, one);

          }

      }

    }

    public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

      private IntWritable result = new IntWritable();

      public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {

        int sum = 0;

        for (IntWritable val : values) {

          sum += val.get();

        }

        result.set(sum);

        context.write(key, result);

      }

    }

    public static void main(String[] args) throws Exception {

      Configuration conf = new Configuration();

      String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

      if (otherArgs.length != 2) {

        System.err.println("Usage: wordcount <in> <out>");

        System.exit(2);

      }

      Job job = new Job(conf, "word count");

      job.setJarByClass(WordCount.class);

      job.setMapperClass(TokenizerMapper.class);

      job.setCombinerClass(IntSumReducer.class);

      job.setReducerClass(IntSumReducer.class);

      job.setOutputKeyClass(Text.class);

      job.setOutputValueClass(IntWritable.class);

      FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

      FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

      System.exit(job.waitForCompletion(true) ? 0 : 1);

    }

    }

    复制代码

    四、运行

        1、在HDFS上创建目录input

            hadoop fs -mkdir input

        2、拷贝本地README.txt到HDFS的input里

             hadoop fs -copyFromLocal /usr/local/hadoop/README.txt input

        3、点击WordCount.java,右键,点击Run As—>Run Configurations,配置运行参数,即输入和输出文件夹

      hdfs://localhost:9000/user/hadoop/input hdfs://localhost:9000/user/hadoop/output

        

        

      点击Run按钮,运行程序。

        4、运行完成后,查看运行结果        

            方法1:

            hadoop fs -ls output

            可以看到有两个输出结果,_SUCCESS和part-r-00000

            执行hadoop fs -cat output/*

            

            

            方法2:

            展开DFS Locations,如下图所示,双击打开part-r00000查看结果

        

              

            

        

  • 相关阅读:
    JAVA火星坐标系、百度坐标系、84坐标系相互转换工具类
    MySQL查看数据库连接数
    GmSSL制作国密算法自签证书和 HTTPS 配置
    mysql占用内存过多
    Redis 缓存穿透、击穿、雪崩
    Linux清理入侵痕迹
    helm v3
    docker常见的网络
    fuser、lsof的使用
    find命令-exec选项,find命令配合xargs
  • 原文地址:https://www.cnblogs.com/jpfss/p/7908884.html
Copyright © 2011-2022 走看看