zoukankan      html  css  js  c++  java
  • 新版无完整背景图片滑块验证码

    新版无完整背景图片滑块验证码

    步骤:

    1、将图片灰度,两张都要灰度

    2、将图片锐化,两张都要锐化

    3、计算2d卷积核,两张都要计算

    4、卷积结果最大的点所在区域即为与卷积核(小滑块)边缘重合度最高的区域。

    那么在背景图中,与小滑块重合度最高的区域应该为缺口区域。因此我们找到的卷积结果最大的点就是背景图缺口的中心点。

    import requests
    import cv2
    import time
    import os
    from scipy import signal
    from selenium import webdriver	#用来驱动浏览器的
    from selenium.webdriver import ActionChains	#破解滑动验证码的时候用,可拖动图片
    from selenium.webdriver.common.keys import Keys
    
    # 通过新版无原图滑块验证码
    class Pass_slide:
    
        def __init__(self):
            self.driver = webdriver.Chrome()
    
    
        def input_user_pwd(self):
            self.driver.get('https://star.toutiao.com/')
            # 数字账号密码登录
            self.driver.find_element_by_xpath('//*[@id="app"]/div/div[1]/div[2]/div[2]/div[1]').click()
            time.sleep(1)
            self.driver.find_element_by_xpath('/html/body/div/div/div[2]/div[2]/div/div/div[2]/div[2]/div[1]/div/div[1]').click()
            time.sleep(1)
            # 输入账号
            self.driver.find_element_by_xpath('//*[@id="account-sdk"]/section/div[3]/div[1]/div[2]/div/input').send_keys(
                'username'
            )
            # 输入密码
            self.driver.find_element_by_xpath('//*[@id="account-sdk"]/section/div[3]/div[2]/div/div/input').send_keys(
                'password'
            )
            time.sleep(1)
            # 点击登录
            self.driver.find_element_by_xpath('//*[@id="account-sdk"]/section/div[6]/button').click()
            time.sleep(1)
    
        def slide_button(self):
            # 定位滑块位置
            # 方式一:通过图片定位位置
            # button = self.driver.find_element_by_xpath('//*[@id="account-sdk-slide-container"]/div/div[2]/img[2]')
            # 方式二: 用 Xpath 定位位置
            # button = self.driver.find_element_by_xpath(
            #     '//*[@id="account-sdk-slide-container"]/div/div[3]/div[2]/div[2]/div'
            # )
            # 方式三:通过 class 来定位
            button = self.driver.find_element_by_class_name('sc-jKJlTe')
            time.sleep(1)
            return button
    
        def move_to_slide(self,distance):
            # tracks是要传入的移动轨迹
            ActionChains(self.driver).click_and_hold(self.slide_button()).perform()  # 移动
            for x in self.track(distance):
                ActionChains(self.driver).move_by_offset(xoffset=x, yoffset=0).perform()
            time.sleep(0.3)
            ActionChains(self.driver).release().perform()
    
        def track(self, distance):  # distance为传入的总距离
            # 移动轨迹
            track = []
            current = 0  # 当前位移
            mid = distance * 4 / 5  # 减速阈值
            t = 0.2  # 计算间隔
            v = 1  # 初速度
            while current < distance:
                if current < mid:
                    a = 4  # 加速度为2
                else:
                    a = -3  # 加速度为-2
                v0 = v
                v = v0 + a * t  # 当前速度
                move = v0 * t + 1 / 2 * a * t * t  # 移动距离
                current += move  # 当前位移
                track.append(round(move))  # 加入轨迹
            return track
    
        def download_slide_auth_code_img(self):
            # 下载滑块,和背景缺口图片
            if not os.path.exists('./Auth_Slide_Img'):
                os.mkdir('./Auth_Slide_Img')
            big_img_url = self.driver.find_element_by_xpath(
                '//*[@id="account-sdk-slide-container"]/div/div[2]/img[1]').get_attribute('src')  # 缺口背景图片 地址
            small_img_url = self.driver.find_element_by_xpath(
                '//*[@id="account-sdk-slide-container"]/div/div[2]/img[2]').get_attribute('src')  # 滑块的图片 地址
    
            with open('Auth_Slide_Img/big_slide_img.jpg', 'wb') as f:
                f.write(requests.get(big_img_url).content)
            with open('Auth_Slide_Img/small_slide_img.jpg', 'wb') as f:
                f.write(requests.get(small_img_url).content)
    
    
        # 图片转为 灰度图片
        def img2gray(self, image):
            self.download_slide_auth_code_img()
            img_rgb = cv2.imread(image)  # 读入图片
            img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)  # 转灰度图片
            # cv2.imwrite(image, img_gray)  # 保存图片,第一个参数:path, 第二个参数:保存的图片
            return img_gray
    
        # 锐化边缘
        def canny_edge(self, image):
            self.img2gray(image)
            img = cv2.imread(image, 0)
            blur = cv2.GaussianBlur(img, (3, 3), 0)  # 用高斯滤波处理原图像降噪
            canny = cv2.Canny(blur, threshold1=200, threshold2=300)  # 锐化图片
            # cv2.imwrite(image, canny)  # 保存图片
            # cv2.imshow('candy', can)  # 弹出图片
            cv2.waitKey()
            cv2.destroyAllWindows()  # 关闭窗口
            return canny
    
        # 计算 2d 卷积
        def convole2d(self, bg_array, fillter):
            bg_h, bg_w = bg_array.shape[:2]
            fillter_h, fillter_w = fillter.shape[:2]
            c_full = signal.convolve(bg_array, fillter, mode='full')
            kr, kc = fillter_h // 2, fillter_w // 2
            c_same = c_full[
                     fillter_h - kr - 1: bg_h + fillter_h - kr - 1,
                     fillter_w - kc - 1: bg_w + fillter_w - kr - 1,
                     ]
            return c_same
    
        # 最终位置
        def find_max_point(self, arrays, search_on_horizontal_center=False):
            max_point = 0
            max_point_pos = None
    
            array_rows, arrays_cols = arrays.shape
            if search_on_horizontal_center:
                for col in range(arrays_cols):
                    if arrays[array_rows // 2, col] > max_point:
                        max_point = arrays[array_rows // 2, col]
                        max_point_pos = col, array_rows // 2
            else:
                for row in range(array_rows):
                    for col in range(arrays_cols):
                        if arrays[row, col] > max_point:
                            max_point = arrays[row, col]
                            max_point_pos = col, row
    
            return max_point_pos
    
        def main(self):
            self.input_user_pwd()
            canny1 = self.canny_edge('Auth_Slide_Img/big_slide_img.jpg')
            canny2 = self.canny_edge('Auth_Slide_Img/small_slide_img.jpg')
            convoled_after = self.convole2d(canny1, canny2)
            distance = self.find_max_point(convoled_after)
            print(distance)
            self.move_to_slide(distance[0])
            return distance[0]
    
        def is_login(self):
    
            try:
                time.sleep(3)
                html = self.driver.find_element_by_xpath('/html/body/div[1]/div[2]/div/div[1]/button/i').click()
                print('login success!')
                self.driver.find_element_by_xpath(
                    '/html/body/div[1]/div[1]/div[2]/div[1]/div[1]/div/div[2]/div[2]/div[1]/div[2]/div[1]/span').click()
                time.sleep(1)
                self.driver.find_element_by_xpath(
                    '/html/body/div[1]/div[1]/div[2]/div[1]/div[1]/div/div[3]/div/div[1]/button/i').click()
                return True
            except:
                self.driver.close()
                print('login failed trying...')
                # self.is_login()
                return False
    
        def movement_search(self):
            self.driver.find_element_by_xpath('/html/body/div[1]/div[1]/div[2]/div[1]/div[1]/div/div[1]/div[1]/div/div[2]/div[3]/div/div[1]/input').send_keys('口红')
            time.sleep(10)
            self.driver.find_element_by_xpath('/html/body/div[1]/div[1]/div[2]/div[1]/div[1]/div/div[1]/div[1]/div/div[2]/div[3]/i').send_keys(Keys.ENTER)
            time.sleep(6)
            self.driver.find_element_by_xpath('/html/body/div[1]/div[1]/div[2]/div[1]/div[1]/div/div[2]/div[1]/div/div[2]/div/div/div[1]/div[1]/div[1]/div[1]/div[2]/div[1]/div[1]').click()
            price1 = self.driver.find_element_by_xpath('/html/body/div[1]/div[1]/div[2]/div[1]/div[1]/div/div[1]/div/div[2]/div[2]/div[1]/div[1]/div[1]/div[1]/div/div[1]/div[1]/div/text()').extract()
            price2 = self.driver.find_element_by_xpath('/html/body/div[1]/div[1]/div[2]/div[1]/div[1]/div/div[1]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div[1]/div/div[1]/div[1]/div/text()').extract()
            print(price1, price2)
    
    
    
    run = Pass_slide()
    run.main()
    login_result = run.is_login()
    print(login_result)
    
    run.movement_search()
    
    

  • 相关阅读:
    Nuget常用命令(转)
    Core使用SAP Web Service
    jquery.dataTables动态列--转
    jqGrid随窗口大小变化自适应大小-转
    30个值得推荐的数据可视化工具--转
    Automapper问题记录
    MVC及MVC Core在filter中如何获取控制器名称和Action名称
    .Net Core使用 MiniProfiler 进行性能分析(转)
    Core中使用Hangfire
    ASP.NET 多环境下配置文件web.config的灵活配置---转
  • 原文地址:https://www.cnblogs.com/kai-/p/13650948.html
Copyright © 2011-2022 走看看