题意:
有 n 支队伍进行比赛,每支队伍需要打的比赛数目相同。每场比赛恰好一支队伍获胜,另一支败。
给出每支队伍目前胜的场数和败的场数,以及每两个队伍还剩下的比赛场数,确定所有可能的冠军队(获胜场次最多,可以并列)
思路:
1. 首先明确题意是“可能”,这个时候可以加强命题:i 队如果剩下的 x 场都获胜,看 i 此时在约束条件下是不是冠军队;
2. 如果把(u, v)比赛看成任务,任务交给 u,v 来处理,最终可以变成最大流问题:
a. 源点设为 S,汇点为 T,S 向 (u, v)构造的节点引弧,容量为这两只队伍还需要比赛的场次;
b. i 在 1 的情况下获胜场次是 total 次, 对于每个节点 u 向 T 引弧,容量为 total - win(u);
c. (u, v) 向 u, v 各引弧,容量分别为无穷大。
3. 当前图的最大流当且仅当 S 出发的弧满载时,当前判断的队伍可以获得冠军。满载表示所有比赛比完,并且没有队伍获胜场次超过 total 的;
4. 代码就顺着书上的 dinic 模板敲了,还是比 SAP + GAP 好理解很多的。
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 700;
const int INFS = 0x3FFFFFFF;
struct edge {
int from, to, cap, flow;
edge(int _from, int _to, int _cap, int _flow)
: from(_from), to(_to), cap(_cap), flow(_flow) {}
};
struct Dinic {
vector<edge> edges;
vector<int> G[MAXN];
int n, s, t, d[MAXN];
bool vis[MAXN];
void addedge(int u, int v, int cap) {
edges.push_back(edge(u, v, cap, 0));
edges.push_back(edge(v, u, 0, 0));
G[u].push_back(edges.size() - 2);
G[v].push_back(edges.size() - 1);
}
bool BFS() {
queue<int> Q;
memset(d, 0, sizeof(d));
memset(vis, false, sizeof(vis));
d[s] = 0;
vis[s] = true;
Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = 0; i < G[u].size(); i++) {
edge& e = edges[G[u][i]];
if (e.cap > e.flow && !vis[e.to]) {
vis[e.to] = true;
d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if (x == t || a == 0)
return a;
int flow = 0;
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (d[e.to] == d[x] + 1) {
int f = DFS(e.to, min(a, e.cap - e.flow));
if (f < 0) continue;
flow += f;
e.flow += f;
edges[G[x][i]^1].flow -= f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
int maxflow(int s, int t) {
this->s = s, this->t = t;
int flow = 0;
while (BFS()) {
flow += DFS(s, INFS);
}
return flow;
}
void clearall(int n) {
this->n = n;
edges.clear();
for (int i = 0; i < n; i++)
G[i].clear();
}
};
Dinic dinic;
const int MAXT = 30;
int n, w[MAXT], d[MAXT], a[MAXT][MAXT];
inline int ID(int u) { return n*n + u + 1; }
inline int ID(int u, int v) { return u*n + v + 1; }
bool canwin(int team) {
int total = w[team], full = 0;
for (int i = 0; i < n; i++)
total += a[team][i];
for (int i = 0; i < n; i++)
if (w[i] > total) return false;
int s = 0, t = n*n + n + 1;
dinic.clearall(n*n + n + 2);
for (int u = 0; u < n; u++) {
for (int v = u+1; v < n; v++) {
full += a[u][v];
if (a[u][v] > 0)
dinic.addedge(s, ID(u, v), a[u][v]);
dinic.addedge(ID(u, v), ID(u), INFS);
dinic.addedge(ID(u, v), ID(v), INFS);
}
if (total > w[u])
dinic.addedge(ID(u), t, total - w[u]);
}
int flow = dinic.maxflow(s, t);
return flow == full;
}
int main() {
int cases;
scanf("%d", &cases);
while (cases--) {
scanf("%d", &n);
for (int i = 0; i < n; i++)
scanf("%d%d", &w[i], &d[i]);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
scanf("%d", &a[i][j]);
vector<int> ans;
ans.clear();
for (int i = 0; i < n; i++) {
if (canwin(i)) ans.push_back(i+1);
}
for (int i = 0; i < ans.size(); i++) {
if (i == 0) printf("%d", ans[i]);
else printf(" %d", ans[i]);
}
printf("\n");
}
return 0;
}