zoukankan      html  css  js  c++  java
  • lsa cosine R

    cosine {lsa}R Documentation

    Cosine Measure (Matrices)

    Description

    Calculates the cosine measure between two vectors or between all column vectors of a matrix.

    Usage

    cosine(x, y = NULL)
    

    Arguments

    xA vector or a matrix (e.g., a document-term matrix).
    yOptional: a vector with compatible dimensions to x. If `NULL', all column vectors of x are correlated.

    Details

    cosine() calculates a similarity matrix between all column vectors of a matrix x. This matrix might be a document-term matrix, so columns would be expected to be documents and rows to be terms.

    When executed on two vectors x and ycosine() calculates the cosine similarity between them.

    Value

    Returns a n*n similarity matrix of cosine values, comparing all n column vectors against each other. Executed on two vectors, their cosine similarity value is returned.

    Note

    The cosine measure is nearly identical with the pearson correlation coefficient (besides a constant factor)cor(method="pearson"). For an investigation on the differences in the context of textmining see (Leydesdorff, 2005).

    Author(s)

    Fridolin Wild fridolin.wild@wu-wien.ac.at

    References

    Leydesdorff, L. (2005) Similarity Measures, Author Cocitation Analysis,and Information Theory. In: JASIST 56(7), pp.769-772.

    See Also

    cor

    Examples

    ## the cosinus measure between two vectors
    
    vec1 = c( 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
    vec2 = c( 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0 )
    cosine(vec1,vec2) 
    
    ## the cosine measure for all document vectors of a matrix
    
    vec3 = c( 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0 )
    matrix = cbind(vec1,vec2, vec3)
    cosine(matrix)
  • 相关阅读:
    微信小程序scroll-viwe遇到的问题
    微信小程序缓存
    微信刷新数据不刷新页面的另一个方法
    微信小程序中无刷新修改
    Bayesian
    深度学习(七)object detection
    深度学习(十二)wide&deep model
    深度学习(十)训练时的调参技巧
    深度学习(九)过拟合和欠拟合
    深度学习(二)常见概念
  • 原文地址:https://www.cnblogs.com/lexus/p/2270661.html
Copyright © 2011-2022 走看看