zoukankan      html  css  js  c++  java
  • 利用多项式实现图像几何校正(Matlab实现)

     

    1.原理简述:      

          根据两幅图像中的一些已知对应点(控制点对),建立函数关系式,通过坐标变换,实现失真图像的几何校正。

                                          

          

            设两幅图像坐标系统之间畸变关系能用解析式来描述:

                                 

             根据上述的函数关系,可以依次计算畸变图像每个像素的矫正坐标值,保持各像素值不变,这样生成一幅矫正图像。

    2.实现过程:     

            (1)因此首先要得到多项式,matlab提供了拟合多项式的函数 Isqcurvefit,

                                   格式:lsqcurvefit(f,a,x,y)

                     f:符号函数句柄

                    a:最开始预估的值(预拟合的未知参数的估计值)。如上面的问题如果我们预估A为1,B为2,则a=[1 2]

                    x:我们已经获知的x的值

                    y:我们已经获知的x对应的y的值

                   函数的返回值为对应多项式系数组成的一维数组。

    示例(二次多项式):建立由校正图像到畸变图像的函数

    function [F] = fun(a,b)
    x = b(:,1);
    y = b(:,2);
    F = a(1)+a(2)*x+a(3)*y+a(4)*x.^2+a(5)*x.*y+a(6)*y.^2; 
    end
    
    
    x0 = fixedPoints(:,1);
    y0 = fixedPoints(:,2);
    x1 = movingPoints(:,1);
    y1 = movingPoints(:,2);
    data = [x1,y1];
    a = [1 1 1 1 1 1];
    a1 = lsqcurvefit('fun',a,data,x0);
    a2 = lsqcurvefit('fun',a,data,y0);

             (2)根据得到的二项式,由校正图像每个像素坐标(x,y)出发,算出在已知畸变图像上的对应坐标(x',y'),使像元一一对应,赋予校正图像对应畸变图像的像元

    的像素值,最终得到校正图像。

    示例:

    J2 = uint8(zeros(size(J)));
    for rgb = 1:3
        for i = 1:m
            for j = 1:n
                if round(fun(a1,[i,j]))>=1 && round(fun(a1,[i,j]))<=c && round(fun(a2,[i,j]))>=1 && round(fun(a2,[i,j]))<=d
                     J2(i,j,rgb) = J1(round(fun(a1,[i,j])),round(fun(a2,[i,j])),rgb);
                end
            end
        end
    end

              这样生成的图像像素分布不规则,会出现像素挤压、疏密不均的现象,因此最后还需对不规则图像进行灰度内插生成规则的栅格图像。

    源码:

    I = imread('sp.tif');
    J = imread('tm.tif');
    [m,n] = size(J);
    [o,p] = size(I);
    %cpselect(J,I);
    %xlswrite('data1.xls',fixedPoints);
    %xlswrite('data2.xls',movingPoints);
    
    
    %%重采样
    J1 = J(1:m/o:end,1:n/p:end,1:3);
    [c,d,q]= size(J1);
    
    fixedPoints = xlsread('data1.xls');
    movingPoints = xlsread('data2.xls');
    x0 = fixedPoints(:,1);
    y0 = fixedPoints(:,2);
    x1 = movingPoints(:,1);
    y1 = movingPoints(:,2);
    data = [x1,y1];
    a = [1 1 1 1 1 1];
    a1 = lsqcurvefit('fun',a,data,x0);
    a2 = lsqcurvefit('fun',a,data,y0);
    %多项式几何校正
    J2 = uint8(zeros(size(J)));
    for rgb = 1:3
        for i = 1:m
            for j = 1:n
                if round(fun(a1,[i,j]))>=1 && round(fun(a1,[i,j]))<=c && round(fun(a2,[i,j]))>=1 && round(fun(a2,[i,j]))<=d
                     J2(i,j,rgb) = J1(round(fun(a1,[i,j])),round(fun(a2,[i,j])),rgb);
                end
        %           J2(round(fun(a1,[i,j])),round(fun(a2,[i,j]))) = J(i,j);
        %           end
            end
        end
    end
    [x,y] = size(J2);
    
    %根据数据游标取截取区域的左上方点
    J3 = imcrop(I,[98 180 60*o/x 60*p/y]);
    J4 = imcrop(J2,[41 80 60 60]);
    [k,y,z] = size(J3);
    [h,t,e] = size(J4);
    
    %%重采样
    %双线性内插法
    u = h/k;
    v = t/y;
    itp = uint8(zeros(k,y,3));
    for rgb = 1:3
        for i = ceil(1/u):k-1
            iu = floor(i*u);
            for j = ceil(1/v):y-1 
                jv = floor(j*v);
                itp(i,j,rgb) = (1-(i*u-iu))*(1-(j*v-jv))*J4(iu,jv,rgb)...
                           +(1-(i*u-iu))*(j*v-jv)*J4(iu,jv+1,rgb)...
                           +(i*u-iu)*(1-(j*v-jv))*J4(iu+1,jv,rgb)...
                           +(i*u-iu)*(j*v-jv)*J4(iu+1,jv+1,rgb);
            end
        end
    end
    %去黑边
    for rgb = 1:3
        for i = 1:3 
            for j = 1:175
              itp(i,j,rgb) = J4(ceil(i*u),ceil(j*v),rgb);
              itp(145,j,rgb) = J4(43,ceil(j*v),rgb);
            end
        end
        for j = 1:2
            for i = 1:145
               itp(i,j,rgb) = J4(ceil(i*u),ceil(j*v),rgb);
               itp(i,175,rgb) = J4(ceil(i*u),61,rgb);
            end
        end
    end
    imwrite(J3,'Core1.bmp','bmp');
    imwrite(itp,'Core2.bmp','bmp');
    
    subplot(231),imshow(J),title('待配准图像');
    subplot(232),imshow(I),title('基准图像');
    subplot(233),imshow(J2),title('多项式几何校正后');        
    subplot(234),imshow(J3),title('基准影像裁剪后');
    subplot(235),imshow(itp),title('校正影像裁剪重采样后');
    
    
    
    % %基准图重采样
    % kh = zuixiaogongbeishu(k,h);
    % yt = zuixiaogongbeishu(y,t);
    % u = h/kh;v = t/yt;
    % J5 = J3(1:k/kh:end,1:y/yt:end,1:3);
    % %配准图 双线性内插法重采样
    % itp = uint8(zeros(kh,yt,3));
    % for rgb = 1:3
    %     for i = floor(1/u):kh-1
    %         iu = floor(i*u);
    %         for j = floor(1/v):yt-1 
    %             jv = floor(j*v);
    %             itp(i,j,rgb) = (1-(i*u-iu))*(1-(j*v-jv))*J4(iu,jv,rgb)...
    %                        +(1-(i*u-iu))*(j*v-jv)*J4(iu,jv+1,rgb)...
    %                        +(i*u-iu)*(1-(j*v-jv))*J4(iu+1,jv,rgb)...
    %                        +(i*u-iu)*(j*v-jv)*J4(iu+1,jv+1,rgb);
    %         end
    %     end
    % end
    % %去黑边
    % for rgb = 1:3
    %     for i = 1:144 
    %         for j = 1:10675
    %           itp(i,j,rgb) = J4(ceil(i*u),ceil(j*v),rgb);
    %         end
    %     end
    %     for j = 1:175
    %         for i = 1:6235
    %            itp(i,j,rgb) = J4(ceil(i*u),ceil(j*v),rgb);
    %         end
    %     end
    % end
    % 
    % itp1 = uint8(zeros(6193,10615,3));
    % itp1(1:6193,1:10615,1:3) = itp(1:6193,1:10615,1:3);
    % imwrite(J5,'Crop1.bmp','bmp');
    % J5 = imread('Crop1.bmp');
    % imwrite(itp1,'Crop2.bmp','bmp');
    % J6 = imread('Crop2.bmp');
    
    % subplot(231),imshow(J),title('待配准图像');
    % subplot(232),imshow(I),title('基准图像');
    % subplot(233),imshow(J2),title('多项式几何校正后');        
    % subplot(234),imshow(J5),title('基准影像裁剪重采样后');
    % subplot(235),imshow(J6),title('校正影像裁剪重采样后');
    
    % a = imread('基准.bmp');
    % b = imread('重采样后图像.bmp');
    % c = imcrop(a,[1,100,100,100]);
    % d = imcrop(b,[1,100,100,100]);
    % imwrite(c,'Core3.bmp','bmp');
    % imwrite(d,'Core4.bmp','bmp');
  • 相关阅读:
    php的form中元素name属性相同时的取值问题
    从FCN到DeepLab
    论文学习:Fully Convolutional Networks for Semantic Segmentation
    笔记:基于DCNN的图像语义分割综述
    论文笔记(3):STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation
    概念:弱监督学习
    FCN小小实战
    (2)Deep Learning之线性单元和梯度下降
    (1)Deep Learning之感知器
    深度学习实验系列(1)
  • 原文地址:https://www.cnblogs.com/liqinglong/p/10989400.html
Copyright © 2011-2022 走看看