import tensorflow as tf
import numpy as np
原型:np.random.randint(low, high=None, size=None, dtype='l')
''' 当只有low时候,返回的值范围是[0,low).有low和high时候,返回值范围是[low,high). ''' t1 = np.random.randint(2,size=10) print(t1) #[0 0 0 0 1 0 1 1 1 1] t2 = np.random.randint(low=1,high=3,size=10) print(t2) #[2 1 2 1 2 2 2 1 1 2]
原型:np.random.rand(d0, d1, ..., dn),其中di表示维数
''' 返回范围为[0,1)均匀分布 ''' t3 = np.random.rand(3, 2) print(t3) #[[0.25586789 0.26593995] # [0.00827676 0.67958833] # [0.77343696 0.40320088]]
原型:tf.random_normal(shape,
mean=0.0,
stddev=1.0,
dtype=dtypes.float32,
seed=None,
name=None)
''' 根据shape返回一个张量,其中值服从均值为0,方差为1的正态分布 ''' t4 = tf.random_normal((3, 2)) print(t4) #Tensor("random_normal:0", shape=(3, 2), dtype=float32) with tf.Session() as sess: init =tf.global_variables_initializer() print(sess.run(t4)) #[[-0.1009187 -0.52692866] # [ 0.75775075 0.10555366] # [ 0.89376223 -1.5488473 ]]
原型:tf.random_uniform(shape,
minval=0,
maxval=None,
dtype=dtypes.float32,
seed=None,
name=None)
''' 从均匀分布中随机取值,范围为[minval,maxval) ''' t5 = tf.random_uniform((3, 2),minval=1,maxval=3) print(t5) #Tensor("random_uniform:0", shape=(3, 2), dtype=float32) with tf.Session() as sess: init =tf.global_variables_initializer() print(sess.run(t5)) #[[2.8821492 1.3117931] # [2.6424809 1.5386689] # [1.4922662 1.0668414]]