zoukankan      html  css  js  c++  java
  • #Hadoop集群部署

    #

    1. 配置JAVA环境(vi/etc/profile.d/java.sh)

    [root@master ~]# yum install java-1.8.0-openjdk-devel

     

    [root@master ~]# vi /etc/profile.d/java.sh
    添加JAVA环境变量
    export JAVA_HOME=/usr

    或者编译安装。

    export JAVA_HOME=/usr/java/jdk1.8.0_151
    export JRE_HOME=$JAVA_HOME/jre
    export CLASSPATH=$JAVA_HOME/lib:$JAVA_HOME/lib/tools.jar
    export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin

    node节点也需要配置JAVA环境。

    2.创建hadoop用户

    [root@master hadoop]# useradd hadoop
    [root@master hadoop]#echo 'hadoop'|passwd -stdin hadoop

    node2,node3,node4都需要创建。

    3. 配置hosts(/etc/hosts)

    127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
    ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
    192.168.15.128 master192.168.15.129 node2
    192.168.15.130  node3
    192.168.15.131 node4

    node2,node3,node4都需要配置。

     

    4. 配置master免密登录node节点

    [root@master ~]# su - hadoop
    [hadoop@master ~]$ ssh-keygen -t rsa -P ''
    [hadoop@master ~]$ for i in 2 3 4;do ssh-copy-id -i .ssh/id_rsa_pub hadoop@node${i};done

     

    5.  解压hadoop安装包

    [root@master ~]# tar -zxvf hadoop-2.8.2.tar.gz -C /usr/local/
    [root@master ~]# cd /usr/local
    [root@master ~]# ln -sv hadoop-2.8.2 hadoop

     

    6. 创建数据目录和日志目录

    [root@master ~]# mkdir -pv /data/hadoop/hdfs/{name,sname,data}
    [root@master ~]# chown -R hadoop:hadoop /data
    创建日志目录
    [root@master ~]# mkdir /usr/local/hadoop/logs
    [root@master ~]# chown -R hadoop:hadoop /usr/local/hadoop/
    [root@master ~]# chmod g+x /usr/local/hadoop/logs

     

    7. 配置hadoop配置文件(/usr/local/hadoop/etc/hadoop/)下面的配置Node节点也需要同样的配置,master配置完,

    可以通过命令[hadoop@master ~]$ scp /usr/local/hadoop/etc/hadoop/*  hadoop@node2:/usr/local/hadoop/etc/hadoop/

    core-site.xml

    <configuration>
            <property>
                    <name>fs.defaultFS</name>
                    <value>hdfs://master:8082</value>
            </property>
    </configuration>

    hdfs-site.xml

    <configuration>
            <property>
                    <name>dfs.namenode.name.dir</name>
                    <value>file:///data/hadoop/hdfs/name</value>
            </property>
            <property>
                    <name>dfs.datanode.data.dir</name>
                    <value>file:///data/hadoop/hdfs/data</value>
            </property>
            <property>
                    <name>dfs.replication</name>
                    <value>2</value>
            </property>
            <property>
                    <name>fs.checkpoint.dir</name>
                    <value>file:///data/hadoop/hdfs/sname</value>
            </property>
            <property>
                    <name>fs.checkpoint.edits.dir</name>
                    <value>file:///data/hadoop/hdfs/sname</value>
            </property>
    </configuration>

     yarn-site.xml

    <configuration>
    
    <!-- Site specific YARN configuration properties -->
     <property>
             <name>yarn.resourcemanager.address</name>
            <value>master:8032</value>
    </property>
    <property>
            <name>yarn.resourcemanager.scheduler.address</name>
            <value>master:8030</value>
    </property>
    <property>
            <name>yarn.resourcemanager.resource-tracker.address</name>
            <value>master:8031</value>
    </property>
    <property>
            <name>yarn.resourcemanager.admin.address</name>
            <value>master:8033</value>
    </property>
    <property>
            <name>yarn.resourcemanager.webapp.address</name>
            <value>master:8088</value>
    </property>
    <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
    </property>
    <property>
            <name>yarn.nodemanager.auxservices.mapreduce_shuffle.class</name>
            <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
            <name>yarn.resourcemanager.scheduler.class</name>
            <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
    </property>
    </configuration>

    mapred-site.xml

    <configuration>
            <property>
                    <name>mapreduce.framework.name</name>
                    <value>yarn</value>
            </property>
    </configuration>

     slaves

    node2
    node3
    node4

    hadoop-env.sh(需要添加JAVA环境变量)

    export JAVA_HOME=/usr/java/jdk1.8.0_151


    8. 格式化HDFS

    [root@master ~]# su - hadoop
    [hadoop@master ~]$ hdfs namenode -format

    输出结果为 17/11/13 23:13:47 INFO common.Storage: Storage directory /data/hadoop/hdfs/name has been successfully formatted.
    说明格式化成功了。

    9. 启动dfs

    [hadoop@master ~]$ start-dfs.sh
    Starting namenodes on [master]
    master: starting namenode, logging to /bdapps/hadoop/logs/hadoop-hadoop-namenode-master.out
    node2: starting datanode, logging to /bdapps/hadoop-2.8.2/logs/hadoop-hadoop-datanode-node2.out
    node3: starting datanode, logging to /bdapps/hadoop-2.8.2/logs/hadoop-hadoop-datanode-node3.out
    node4: starting datanode, logging to /bdapps/hadoop-2.8.2/logs/hadoop-hadoop-datanode-node4.out
    Starting secondary namenodes [0.0.0.0]
    0.0.0.0: starting secondarynamenode, logging to /bdapps/hadoop/logs/hadoop-hadoop-secondarynamenode-master.out


    10. 上传一个文件(/etc/fstab)

    [hadoop@master ~]$ hdfs dfs -mkdir /test
    [hadoop@master ~]$ hdfs dfs -put /etc/fstab /test
    [hadoop@master ~]$ hdfs dfs -ls /test
    Found 1 items
    -rw-r--r--   2 hadoop supergroup        779 2017-11-14 00:03 /test/fstab
    [hadoop@master ~]$ hdfs dfs -cat /test/fstab
    
    #
    # /etc/fstab
    # Created by anaconda on Mon Nov 13 08:43:43 2017
    #
    # Accessible filesystems, by reference, are maintained under '/dev/disk'
    # See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
    #
    /dev/mapper/VolGroup-lv_root /                       ext4    defaults        1 1
    UUID=98ed038f-f133-4809-bad8-c4139402b11b /boot                   ext4    defaults        1 2
    /dev/mapper/VolGroup-lv_swap swap                    swap    defaults        0 0
    tmpfs                   /dev/shm                tmpfs   defaults        0 0
    devpts                  /dev/pts                devpts  gid=5,mode=620  0 0
    sysfs                   /sys                    sysfs   defaults        0 0
    proc                    /proc                   proc    defaults        0 0
    [hadoop@master ~]$ 


    11. 启动yarn

    [hadoop@master ~]$ start-yarn.sh 
    starting yarn daemons
    starting resourcemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-resourcemanager-master.out
    node4: starting nodemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-nodemanager-node4.out
    node3: starting nodemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-nodemanager-node3.out
    node2: starting nodemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-nodemanager-node2.out


    可以通过命令jps查看java进程

    Master节点

    [hadoop@master ~]$ jps
    7600 ResourceManager
    7106 NameNode
    8483 Jps
    7304 SecondaryNameNode
    


    Node节点

    [root@node4 ~]# jps
    2802 Jps
    2678 NodeManager
    2553 DataNode


    12. 访问

    hadoop总览
    http://192.168.15.128:50070

    查看hadoop的应用
    http://192.168.15.128:8088

    #

  • 相关阅读:
    Balance_01背包
    4 Values whose Sum is 0_upper_bound&&ower_bound
    Newspaper Headline_set(upper_bound)
    lower_bound和upper_bound算法
    Blocks_DP&&矩阵快速幂
    All X_数的快速幂
    Training little cats_矩阵快速幂
    Raising Modulo Numbers_快速幂取模算法
    Defining Python Source Code Encodings
    Python ord(char)
  • 原文地址:https://www.cnblogs.com/lwsup/p/7838420.html
Copyright © 2011-2022 走看看