zoukankan      html  css  js  c++  java
  • ORB-SLAM2 地图加载

    一、前面说了ORB-SLAM地图的保存部分,继续说地图如何加载,因为加载部分相比保存要稍微复杂一些,所以要多说一点。

    二、ORB-SLAM2地图加载构成

      首先同样是在头文件中声明加载函数,包含地图点和关键帧类的加载。  

    void Load( const string &filename, SystemSetting* mySystemSetting );
    MapPoint* LoadMapPoint( ifstream &f );
    KeyFrame* LoadKeyFrame( ifstream &f, SystemSetting* mySystemSetting );

      下面先是加载主函数Load的构成,关于SystemSetting类后面再说:

    void Map::Load ( const string &filename, SystemSetting* mySystemSetting )
     {
         cerr << "Map reading from:"<<filename<<endl;
         ifstream f;
         f.open( filename.c_str() );
     
         //按照保存的顺序,先读取MapPoints的数目;
         unsigned long int nMapPoints;
         f.read((char*)&nMapPoints, sizeof(nMapPoints));
     
         //依次读取每一个MapPoints,并将其加入到地图中
         cerr<<"The number of MapPoints:"<<nMapPoints<<endl;
         for ( unsigned int i = 0; i < nMapPoints; i ++ )
         {
             MapPoint* mp = LoadMapPoint(f);
             AddMapPoint(mp);
         }
     
         //获取所有的MapPoints;
         std::vector<MapPoint*> vmp = GetAllMapPoints();
     
         //读取关键帧的数目;
         unsigned long int nKeyFrames;
         f.read((char*)&nKeyFrames, sizeof(nKeyFrames));
         cerr<<"The number of KeyFrames:"<<nKeyFrames<<endl;
     
         //依次读取每一关键帧,并加入到地图;
         vector<KeyFrame*>kf_by_order;
         for( unsigned int i = 0; i < nKeyFrames; i ++ )
         {
             KeyFrame* kf = LoadKeyFrame(f, mySystemSetting);
             AddKeyFrame(kf);
             kf_by_order.push_back(kf);
         }
     
         cerr<<"KeyFrame Load OVER!"<<endl;
         //读取生长树;
         map<unsigned long int, KeyFrame*> kf_by_id;
         for ( auto kf: mspKeyFrames )
             kf_by_id[kf->mnId] = kf;
         cerr<<"Start Load The Parent!"<<endl;
         for( auto kf: kf_by_order )
         {
             //读取当前关键帧的父节点ID;
             unsigned long int parent_id;
             f.read((char*)&parent_id, sizeof(parent_id));
     
             //给当前关键帧添加父节点关键帧;
             if ( parent_id != ULONG_MAX )
                 kf->ChangeParent(kf_by_id[parent_id]);
     
             //读取当前关键帧的关联关系;
             //先读取当前关键帧的关联关键帧的数目;
             unsigned long int nb_con;
             f.read((char*)&nb_con, sizeof(nb_con));
             //然后读取每一个关联关键帧的ID和weight,并把该关联关键帧加入关系图中;
             for ( unsigned long int i = 0; i < nb_con; i ++ )
             {
                 unsigned long int id;
                 int weight;
                 f.read((char*)&id, sizeof(id));
                 f.read((char*)&weight, sizeof(weight));
                 kf->AddConnection(kf_by_id[id],weight);
             }
        }
        cerr<<"Parent Load OVER!"<<endl;
        for ( auto mp: vmp )
        {
            if(mp)
            {
                 mp->ComputeDistinctiveDescriptors();
                 mp->UpdateNormalAndDepth();
             }
        }
         f.close();
         cerr<<"Load IS OVER!"<<endl;
         return;
     }

       其过程就是根据保存的顺序依次加载地图点的数目、地图点、关键帧的数目、关键帧、生长树和关联关系。

      下面是LoadMapPoints函数的构成:

     MapPoint* Map::LoadMapPoint( ifstream &f )
     {
             //主要包括MapPoints的位姿和ID;
             cv::Mat Position(3,1,CV_32F);
             long unsigned int id;
             f.read((char*)&id, sizeof(id));
     
             f.read((char*)&Position.at<float>(0), sizeof(float));
             f.read((char*)&Position.at<float>(1), sizeof(float));
             f.read((char*)&Position.at<float>(2), sizeof(float));
     
             //初始化一个MapPoint,并设置其ID和Position;
             MapPoint* mp = new MapPoint(Position, this );
             mp->mnId = id;
             mp->SetWorldPos( Position );
     
             return mp;
     }

       从这里开始涉及到了MapPoint类的初始化问题,由于这里只有Position以及当前的Map,所以需要从新定义MapPoint的构造函数,分别加入到MapPoint的头文件和源文件中:

      MapPoint( const cv::Mat& Pos, Map* pMap );
    
      MapPoint::MapPoint(const cv::Mat &Pos, Map* pMap):
          mnFirstKFid(0), mnFirstFrame(0), nObs(0), mnTrackReferenceForFrame(0), mnLastFrameSeen(0), mnBALocalForKF(0), mnFuseCandidateForKF(0), mnLoopPointForKF(0), mnCorrectedByKF(0),
          mnCorrectedReference(0), mnBAGlobalForKF(0), mpRefKF(static_cast<KeyFrame*>(NULL)), mnVisible(1), mnFound(1), mbBad(false),
          mpReplaced(static_cast<MapPoint*>(NULL)), mfMinDistance(0), mfMaxDistance(0), mpMap(pMap)
      {
          Pos.copyTo(mWorldPos);
          mNormalVector = cv::Mat::zeros(3,1,CV_32F);
      
          // MapPoints can be created from Tracking and Local Mapping. This mutex avoid conflicts with id.
          unique_lock<mutex> lock(mpMap->mMutexPointCreation);
          mnId=nNextId++;
      }

      紧接着是LoadKeyFrame函数的构成,这里由于KeyFrame类需要的初始化信息比较多,因此定义了一个InitKeyFrame类,它通过SystemSetting进行初始化,二SystemSetting的主要作用就是读取设置文件(相机内参,ORB特征参数等),后面将给出SystemSetting和InitKeyFrame类的代码:

     KeyFrame* Map::LoadKeyFrame( ifstream &f, SystemSetting* mySystemSetting )
     {
         //声明一个初始化关键帧的类initkf;
         InitKeyFrame initkf(*mySystemSetting);
     
         //按照保存次序,依次读取关键帧的ID和时间戳;
         f.read((char*)&initkf.nId, sizeof(initkf.nId));
         f.read((char*)&initkf.TimeStamp, sizeof(double));
     
         //读取关键帧位姿矩阵;
         cv::Mat T = cv::Mat::zeros(4,4,CV_32F);
         std::vector<float> Quat(4);
         //Quat.reserve(4);
         for ( int i = 0; i < 4; i ++ )
             f.read((char*)&Quat[i],sizeof(float));
         cv::Mat R = Converter::toCvMat( Quat );
         for ( int i = 0; i < 3; i ++ )
             f.read((char*)&T.at<float>(i,3),sizeof(float));
         for ( int i = 0; i < 3; i ++ )
             for ( int j = 0; j < 3; j ++ )
                 T.at<float>(i,j) = R.at<float>(i,j);
         T.at<float>(3,3) = 1;
     
     //    for ( int i = 0; i < 4; i ++ )
     //    {
     //      for ( int j = 0; j < 4; j ++ )
     //      {
     //              f.read((char*)&T.at<float>(i,j), sizeof(float));
     //              cerr<<"T.at<float>("<<i<<","<<j<<"):"<<T.at<float>(i,j)<<endl;
     //      }
     //    }
     
         //读取当前关键帧特征点的数目;
         f.read((char*)&initkf.N, sizeof(initkf.N));
         initkf.vKps.reserve(initkf.N);
         initkf.Descriptors.create(initkf.N, 32, CV_8UC1);
         vector<float>KeypointDepth;
     
         std::vector<MapPoint*> vpMapPoints;
         vpMapPoints = vector<MapPoint*>(initkf.N,static_cast<MapPoint*>(NULL));
         //依次读取当前关键帧的特征点和描述符;
         std::vector<MapPoint*> vmp = GetAllMapPoints();
         for(int i = 0; i < initkf.N; i ++ )
         {
             cv::KeyPoint kp;
             f.read((char*)&kp.pt.x, sizeof(kp.pt.x));
             f.read((char*)&kp.pt.y, sizeof(kp.pt.y));
             f.read((char*)&kp.size, sizeof(kp.size));
             f.read((char*)&kp.angle,sizeof(kp.angle));
             f.read((char*)&kp.response, sizeof(kp.response));
             f.read((char*)&kp.octave, sizeof(kp.octave));
     
             initkf.vKps.push_back(kp);
     
             //根据需要读取特征点的深度值;
             //float fDepthValue = 0.0;
             //f.read((char*)&fDepthValue, sizeof(float));
             //KeypointDepth.push_back(fDepthValue);
     
             //读取当前特征点的描述符;
             for ( int j = 0; j < 32; j ++ )
                     f.read((char*)&initkf.Descriptors.at<unsigned char>(i,j),sizeof(char));
     
             //读取当前特征点和MapPoints的对应关系;
             unsigned long int mpidx;
             f.read((char*)&mpidx, sizeof(mpidx));
     
             //从vmp这个所有的MapPoints中查找当前关键帧的MapPoint,并插入
             if( mpidx == ULONG_MAX )
                     vpMapPoints[i] = NULL;
             else
                     vpMapPoints[i] = vmp[mpidx];
         }
     
         initkf.vRight = vector<float>(initkf.N,-1);
         initkf.vDepth = vector<float>(initkf.N,-1);
         //initkf.vDepth = KeypointDepth;
         initkf.UndistortKeyPoints();
         initkf.AssignFeaturesToGrid();
     
         //使用initkf初始化一个关键帧,并设置相关参数
         KeyFrame* kf = new KeyFrame( initkf, this, NULL, vpMapPoints );
         kf->mnId = initkf.nId;
         kf->SetPose(T);
         kf->ComputeBoW();
    
         for ( int i = 0; i < initkf.N; i ++ )
         {
             if ( vpMapPoints[i] )
             {
                 vpMapPoints[i]->AddObservation(kf,i);
                 if( !vpMapPoints[i]->GetReferenceKeyFrame())
                     vpMapPoints[i]->SetReferenceKeyFrame(kf);
             }
         }
         return kf;
     }

      从文件中读取的内容同保存的一致,同时由于是通过InitKeyFrame初始化的关键帧类KeyFrame,因此这里同样需要添加构造函数以及初始化方式:

    KeyFrame(InitKeyFrame &initkf, Map* pMap, KeyFrameDatabase* pKFDB,vector< MapPoint*>& vpMapPoints);
    
    
    KeyFrame::KeyFrame(InitKeyFrame &initkf, Map *pMap, KeyFrameDatabase *pKFDB, vector<MapPoint*> &vpMapPoints):
          mnFrameId(0), mTimeStamp(initkf.TimeStamp), mnGridCols(FRAME_GRID_COLS), mnGridRows(FRAME_GRID_ROWS),
          mfGridElementWidthInv(initkf.fGridElementWidthInv), mfGridElementHeightInv(initkf.fGridElementHeightInv),
          mnTrackReferenceForFrame(0), mnFuseTargetForKF(0), mnBALocalForKF(0), mnBAFixedForKF(0),
          mnLoopQuery(0), mnLoopWords(0), mnRelocQuery(0), mnRelocWords(0), mnBAGlobalForKF(0),
          fx(initkf.fx), fy(initkf.fy), cx(initkf.cx), cy(initkf.cy), invfx(initkf.invfx),
          invfy(initkf.invfy), mbf(initkf.bf), mb(initkf.b), mThDepth(initkf.ThDepth), N(initkf.N),
          mvKeys(initkf.vKps), mvKeysUn(initkf.vKpsUn), mvuRight(initkf.vRight), mvDepth(initkf.vDepth),
          mDescriptors(initkf.Descriptors.clone()), mBowVec(initkf.BowVec), mFeatVec(initkf.FeatVec),
          mnScaleLevels(initkf.nScaleLevels), mfScaleFactor(initkf.fScaleFactor), mfLogScaleFactor(initkf.fLogScaleFactor),
          mvScaleFactors(initkf.vScaleFactors), mvLevelSigma2(initkf.vLevelSigma2),mvInvLevelSigma2(initkf.vInvLevelSigma2),
          mnMinX(initkf.nMinX), mnMinY(initkf.nMinY), mnMaxX(initkf.nMaxX), mnMaxY(initkf.nMaxY), mK(initkf.K),
          mvpMapPoints(vpMapPoints), mpKeyFrameDB(pKFDB), mpORBvocabulary(initkf.pVocabulary),
          mbFirstConnection(true), mpParent(NULL), mbNotErase(false), mbToBeErased(false), mbBad(false),
          mHalfBaseline(initkf.b/2), mpMap(pMap)
      {
        mnId = nNextId ++;
      }

       加载了一个关键帧之后还需要计算其BoW向量等操作,同时指定关键帧对地图点的观测。

    三、总结

      加载的过程大概就是这样,时间太晚了,下次在给出InitKeyFrame和SystemSetting两个类的代码,以及其它修改的地方。总结来看,加载时关键帧类和地图点类的初始化是比较烦人的,各种繁琐的参数需要设置,所以很可能存在什么bug也说不定。另外,博客里面的代码部分是参考的网上的代码,部分是自己写的,希望有人看到了有什么错误及时指正。在数据库rgbd_dataset_freiburg1_xyz上的视频测试时是没问题的。

  • 相关阅读:
    自己动手实现java数据结构(五)哈希表
    自己动手实现java数据结构(四)双端队列
    自己动手实现java数据结构(三) 栈
    自己动手实现java数据结构(二) 链表
    自己动手实现java数据结构(一) 向量
    redis学习(七)redis主从复制
    redis学习(六)redis管道
    msf之meterpreter权限绑定以及端口转发
    MSF查找提权exp
    Cobait Strike的socks与ew代理使用
  • 原文地址:https://www.cnblogs.com/mafuqiang/p/6972841.html
Copyright © 2011-2022 走看看